FOREARM, WRIST, HAND \& DIGITS:

- With the arms and hands in the anatomical position:
- Radius is on the lateral side - the thumb side
- Ulna is on the medial side
- Proximal \rightarrow distal:
- Radius thickens
- Ulna narrows
- Styloid processes: boney prominces in the wrist which mark the ends of the ulnar and radius.
- Radial syloid (on thumb side) is lower than the ulnar styloid.
- Distal ulna is the ulna head
- Ulna head articulates with the ulna notch on the radius at the distal radioulnar notch.
- Synovial
- Lax capsule
- Ends of the 2 bones are united by the triangular cartilage
- Triangular cartilage:
- Broad at base of radius
- Narrows to a point on the ulnar styloid.
- The proximal articular surface of the wrist joint is composed of the:
- End of the radius
- Triangular cartilage

Supination and pronation:

- Radius and ulnar can twist and overlap one another in their long axis
- Pronation: twisting bones, palm up \rightarrow palm down
- Supination: untwisting bones, palm down \rightarrow palm up.
- Pronated: bones crossed (thumbs medial)
- Radial tuberosity not visible on radiograph
- Supinated: bones uncrossed (anatomical position - thumbs lateral)
- Radial tuberoisty is easy to identify on radiograph.
- Ulna remains stationary in these movements.
- Distal radius moves in cone motion over stationary ulna:
- Proximal radioulnar joint: radius head rotates - with anular ligament ensuring the bones stay together.
- Distal radioulnar joint: distal radius swings over stationary lower ulna.
- Apex of cone is at the radius head, base is drawn out by radius styloid swinging over ulna styloid process.
- Axis is therefore from middle of radius head to ulnar styloid process.

INTEROSSEOUS MEMBRANE:

- Fibrous membrane between the shafts of ulna and radius, binding them together.
- Interosseous membrane passes obliquely downwards from radius \rightarrow ulna
- Interosseous membrane lax during pronation and supination - doesn't restrict movement.
- Main function is as a platform from which forearm muscles can originate.

BONES OF THE WRIST \& HAND:

- Wrist bones = carpal bones
- 2 rows of carpal bones.
- Proximal row:
- Scaphoid (thumb side)
- Lunate
- Triquetrum
- Linked by ligaments to form a smooth arch.

WRIST JOINT:

- Articulation between proximal row of carpals and lower end of radius
- Synovial
- Condyloid joint - all movement possible except rotation in long axis
- Circumduction is combination of flexion, extension, abduction and adduction - all of which are possible.

Proximal articular surface:

- Concave lower end of radius
- Triangular articular cartilage extending medially to styloid process of ulna.
- Δ ulnar bone takes no part in formation of wrist joint.
- NOTE the lower end of the radius is set obliquely, sloping palm downwards.

Distal articular surface:

- Scaphoid
- Lunate
- Triquetrum
- Triquetrum only contacts triangular cartilage when wrist is adducted.
- The wrist joint is surrounded by a fibrous capsule
- Thickened on either side by radial and ulnar collaeral ligaments.
- Synovial membrane lines the inside of the capsule.

MOVEMENTS OF THE WRIST (in anatomical position):

- Condyloid synovial joint.
- Adduction: triquetrium comes into contacts triangular articular cartilage.
- Abduction: not as free as adduction, as scaphoid comes into contact with radial styloid.

Distal row of carpal bones:

- 4 small bones:
- Trapezium (next to thumb) - cube
- Trapezoid - cube
- Capitate - larger, enxtending into concavity of proximal row
- Hamate - boney hook on palmar surface
- Proximal and distal row of carpal bones articulate with one another as a complex synovial joint the midcarpal joint:
- Fibrous capsule surrounding joint
- Ligaments join each bone to its neighbours.
- Movement between the individual carpal bones and between the 2 rows of carpal bones is a gliding motion.

Metacarpals:

- 5 bones
- Make up framework of palm of hand
- Articulate with the distal row of carpals at synovial carpometacarpal joints

Thumb metacarpal:

- Articulates with trapezium
- Has own capsule and synovial membrane
- Allows thumb such mobility.
- Thumb metacarpal sits in a different orientation to the other metacarpals - it doesn't face directly forwards.
- Means the plane of movement of the thumb is different.
- Learn the pictures opposite for thumb motion.
- Circumduction = combination of flexion, extension, adduction \& abduction.
- Opposition of thumb is a rotation of thumb which allows it to touch tip of a finger.
- The other carpometacarpal joints are much less mobile: finger carpometacarpal joints share the same cavity with the midcarpal joint.
- The little finger metacarpal can be flexed and opposed to increase cupping of palm.

Articulations:

Metacarpal	Carpal bone (distal row)
Thumb (I)	Trapezium
Index finger (II)	Trapezoid
Middle finger (III)	Capitate
Ring \& little finger (IV \& V)	Hamate

- The bases of the finger metacarpals are united by strong ligaments.

PHALANGES:

- Each finger has 3 phalanges
- Proximal phalanx
- Middle phalanx
- Distal phalanx
- Thumb has 2 phalanges
- Proximal phalanx
- Distal phalanx
- Metacarpophalangeal joints (MCP): synovial joint between proximal phalanx and metacarpal
- Interphalangeal joints: between phalanges in a finger / thumb
- Proximal interphalangeal joint (PIP): between proximal and middle phalanges
- Distal interphalangeal joint (DIP): between middle and distal phalanges.
- The capsules of these joints are strengthened by:
- Collateral ligaments on either side
- Palmar ligament on palm side
- Small sesamoid bones can develop in the palmar ligaments, esp. MCP joint of thumb.

MOVEMENTS OF MCP JOINTS:

- Condyloid:

- Flexion
- Extension
- Adduction
- Abduction
- Circumduction
- (NOT rotation)
- With finger MCP joints:
- Adduction = movement towards midline of hand
- Abduction = movement away from the midline of the hand

MOVEMENTS OF IP JOINTS:

- Hinge
- Only flexion and extension
A

B

