CARDIOVASCULAR HOMEOSTASIS

COMPENSATIONS FOR GRAVITATIONAL EFFECTS:

- In the standing position, as a result of the effect of gravity on the blood:
 - MAP in the feet is 180-200mmHg
 - Venous pressure is 90
 - Arterial pressure at head level is 60-75mmHg
 - Venous pressure is zero
 - If the individual DOES NOT MOVE, 300-500mL of blood pools in the venous capacitance vessels of the lower limbs
 - Stroke volume decreases
 - Symptoms of cerebral ischaemia develop when the cerebral blood flow decreases to less than about 60% of the flow in the recumbent position
 - If no cardiovascular compensatory changes occurred, consciousness would be lost
 - MAJOR COMPENSATIONS ON ASSUMING UPRIGHT POSTURE:
 - Triggered by the drop in blood pressure in the CAROTID SINUS AND AORTIC ARCH
 - HEART RATE INCREASES to maintain cardiac output
 - Prompt increase in the circulating levels of RENIN AND ALDOSTERONE
 - Arterioles constrict, helping to maintain blood pressure
 - Relatively little venoconstriction occurs in the periphery
 - In the cerebral circulation:
 - Arterial pressure at head level drops 20-40mmHg, but jugular venous pressure ALSO FALLS 5-8mmHg, reducing the drop in PERFUSION PRESSURE
 - Cerebral vascular resistance is reduced because ICP falls as venous pressure falls, decreasing the pressure ON CEREBRAL VESSELS
 - The decline in cerebral blood flow increases the partial pressure of CO2 and decreases the PO2 and the pH in the brain tissue, further actively DILATING THE CEREBRAL VESSELS
 - Because of these measures, blood flow declines only 20% on standing
 - In addition, the amount of O2 extracted per unit of blood increases
 - Reduced blood flow to brain on standing is mitigated by:

 - ↓ ICP → ÎCPP

- **o** Reactive hyperaemia to $(1002 \downarrow 02)$
- Increased extraction of O2
- With prolonged standing, fainting may result
 - In a sense, fainting is a "HOMESTATIC MECHANISM"
 - Because falling to the horizontal position promptly restores venous return, cardiac output and cerebral blood flow
- The effects of gravity on the circulation in humans depends in part UPON THE BLOOD VOLUME
 - When blood volume is low, these effects are marked, when it is high, they are minimal
- POSTURAL HYPOTENSION:
 - In some individuals, sudden standing causes:
 - Fall in blood pressure
 - Dizziness
 - Dimness of vision
 - Fainting
 - KNOWN AS ORTHOSTATIC POSTURAL HYPOTENSION
 - Causes are multiple
 - Common in patients receiving sympatholytic drugs
 - Also occurs in diabetes and syphilis, in which there is damage to the sympathetic nervous system
 - May also be related to PRIMARY AUTONOMIC FAILURE
- EFFECTS OF ACCELERATION:
 - Positive "g" force is due to acceleration in the long axis of the body, from head to foot
 - Negative "g" force is due to acceleration acting the opposite direction
 - During exposure to a positive g force, blood is "thrown" into the lower part of the body
 - Arterial pressure in the head is reduce, but so are venous pressure and intracranial pressure, and this reduces the decrease in arterial blood flow that would otherwise occur
 - Cardiac output is maintained for a time because blood is drawn from the pulmonary venous reservoir
 - At positive 5g, vision fails (BLACKOUT) and consciousness is lost shortly thereafter
 - Negative g causes:
 - Increased cardiac output
 - Rise in cerebral arterial pressure
 - Intense congestion of the head and neck vessels
 - Eventually mental confusion (RED OUT)

 Vessels generally do NOT RUPTURE, because generally ICP is increased and their walls are supported

• TOLERANCE FOR G FORCES EXERTED ACROSS THE BODY IS MUCH GREATER THAN IT IS FOR AXIAL G

EFFECTS OF ZERO GRAVITY:

- ON CV SYSTEM:
 - There is some disuse atrophy of the mechanisms that withstand gravity on earth, but CV function is maintained for up 14 months
 - On return to earth, astronauts have postural hypotension
 - This disappears with readaptation
- OTHER EFFECTS:

0

- Muscular effort is much reduced
- Decrease in the extensive normal proprioceptive input due to the action of gravity leads to FLACCIDITY AND ATROPHY of skeletal muscles
- Loss of muscle mass
- Steady loss of bone mineral
- Increased Ca excretion
- Loss of red cell mass

EFFECTS OF EXERCISE:

- MUSCLE BLOOD FLOW:
 - The blood flow of resting skeletal muscle is LOW (2-4mL/100g/min)
 - When a muscle contracts, it compresses the vessels in it if develops more than 10% of maximal tension
 - When it develops more than 70% of it s maximal tension, blood flow is COMPLETELY STOPPED
 - Between contractions, flow is SO GREATLY INCREASED that blood flow PER UNIT TIME is increased as much as 30-fold
 - Blood flow can sometimes increase BEFORE EXERCISE:
 - Suggests NEURALLY MEDIATED PROCESS
 - LOCAL MECHANISMS ARE THE DOMINANT MEANS OF CONTROLLING MUSCLE BLOOD FLOW:
 - Fall in tissue PO2
 - Rise in tissue PCO2
 - Accumulation of K, adenosine and other vasodilator metabolites
 - Increased temperature
 - Dilation of the arterioles and precapillary sphincters causes a 10-100-fold increase in the number of open capillaries:
 - I.e. capillary recruitment
 - The average distance between the blood and the active cells is thus GREATLY DECREASED
 - ISA + Udiffusion distance

- Capillary recruitment increases the cross-sectional area of the vascular bed and the velocity of flow therefore decreases
 - The capillary pressure increases until it EXCEEDS THE ONCOTIC PRESSURE
 - In addition, the accumulation of osmotically active metabolites in the interstitium more rapidly than they can be carried away decreases the osmotic gradient
 - THUS, FLUID TRANSUDATION into the interstitial spaces is tremendously increased
 - Lymph flow is also increased, greatly increasing its turnover

- **ÎSA for exudation**
- **îHydrostatic pressure**
- Accumilation of interstitial osmotically active metabolites
- Decreased pH and increased temperature shift the haemoglobindissociation to the right, so that more O2 is given up by the blood
- Concentrations of 2,3 DPG in the RBC is increased and this further decreases the O2 affinity of haemoglobin (right shift)
- The NET RESULT:
 - Up to three-fold increase in the arteriovenous difference
 - Transport of CO2 out of the tissue is also facilitated
- SYSTEMIC CIRCULATORY CHANGES:
 - The systemic cardiovascular response to EXERCISE depend on whether the muscle contractions are primarily ISOMETRIC (SAME LENGTH) or primarily ISOTONIC (SAME LOAD)
 - Just the thought of performing a muscle contraction increases heart rate
 suggests that PSYCHIC STIMULI act on the medulla oblongata
 - With the start of an **ISOMETRIC muscle contraction** (contraction without change in length)
 - <u>RISE IN TPR</u>
 - SYSTOLIC AND DIASTOLIC PRESSURE RISE SHARPLY
 - Stroke volume changes relatively little and blood flow to the steadily contracting muscles is reduced due to vessel compression
 - ISOTONIC muscle contraction:
 - Prompt INCREASE IN HEART RATE
 - Marked INCREASE IN STROKE VOLUME (different from isometric contraction)
 - Net FALL IN TPR due to vasodilation in exercising muscles

- Consequently, systolic BP rises only moderately whereas diastolic pressure usually remains unchanged
- The differences between these two examples lies in the fact that during ISOMETRIC contractions, muscles are tonically contracted and consequently contribute to increased TPR.
- Cardiac output is increased during isotonic exercise to values that may exceed 35L/minute
- A great increase in venous return takes place:
 - Venous return is increased by the great increase in the activity of the muscle and thoracic pumps:
 - Mobilisation of blood from the viscera
 - Increased pressure transmitted through dilated arterioles to the veins
 - Noradrenergically mediated venoconstriction, which decreases the volume of blood in the veins

Isometric contraction: 们TPR → 们SBP + 们DBP Isotonic contraction: 们CO (们SVx们HR), ↓TPR → Mild 们SBP

```
Isometric contraction – tonic contraction of muscles → ①TPR
Isotonic contraction - ①①capillary recruitment → ↓TPR
```

SHOCK:

GENERAL CONSIDERATIONS:

- The feature common to all the entities is:
 - INADEQUATE TISSUE PERFUSION WITH A RELATIVELY OR ABSOLUTELY INADEQUATE CARDIAC OUTPUT
- Can occur if:
 - The amount of fluid in the vascular system is inadequate to fill it
 - Causes of HYPOVOLAEMIC SHOCK include:
 - Haemorrhage
 - Trauma
 - Surgery
 - Burns
 - Fluid loss due to vomiting or diarrhoea
 - Amount of fluid may be inadequate in a RELATIVE SENSE, because the size of the vascular system is increased by vasodilation, even though the blood volume is normal:
 - Causes of DISTRIBUTIVE SHOCK include:
 - Fainting (neurogenic shock)

- Anaphylaxis
- Sepsis (this also causes hypovolaemia due to increased capillary permeability with loss of fluid into tissues
- Can also be due to inadequate pumping action of the heart due to myocardial abnormalities:
 - Causes of CARDIOGENIC SHOCK include:
 - AMI
 - CHF
 - Arrhythmias
- Inadequate cardiac output as a result of obstruction of blood flow in the lungs or heart:
 - Causes of OBSTRUCTIVE SHOCK:
 - Tension pneumothorax
 - Pulmonary embolism
 - Cardiac tumour
 - Cardiac tamponade

HYPOVOLAEMIC SHOCK:

- COLD SHOCK
- HAEMORRHAGIC SHOCK:
 - Principal reactions include:
 - Vasoconstriction
 - Tachycardia
 - Venoconstriction
 - Tachypnoea (increased thoracic pumping)
 - Restlessness
 - Increased movement of interstitial fluid into capillaries
 - Increased secretion of:
 - Noradrenaline
 - Adrenaline
 - Vasopressin
 - Glucocorticoids
 - Renin
 - Aldosterone
 - EPO
 - Increased plasma protein synthesis
- In hypovolaemic and other forms of shock, the inadequate perfusion of the tissue leads to increased anaerobic glycolysis, with the production of large amounts of lactic acid
 - The resulting LACTIC ACIDOSIS:
 - Depresses the myocardium
 - Decreases peripheral vascular responsiveness to catecholamines
 - May be severe enough to cause coma

- RAPID COMPENSATORY REACTIONS:
 - When blood volume is reduced and venous return is decreased, the arterial baroreceptors are stretched LESS and sympathetic output is thus INCREASED
 - Even if there is no drop in MAP, the drop in pulse pressure decreases the rate of discharge in the arterial baroreceptors and reflex tachycardia and vasoconstriction result
 - Vasoconstriction is generalised, sparing only the vessels of the brain and heart
 - Most marked in the skin, where it accounts for the COOLNESS AND PALLOR
 - Also marked in the kidneys and viscera
 - Haemorrhage evokes a widespread venoconstriction that helps maintain the filling pressure of the heart
 - SPLANCHNIC AND SPLENIC constriction shifts blood form the visceral reservoir into the systemic circulation
 - In the kidneys:
 - BOTH afferent and efferent arterioles are constricted, but the efferent vessels are constricted to a greater degree
 - The GFR is depressed, but renal plasma flow is decreased to GREATER extent, so that the filtration fraction INCREASES
 - Especially when the hypotension is prolonged, renal tubular damage may be severe (ARF)
 - Haemorrhage is also a potent stimulus to adrenal medullary secretion
 - Increased circulating catecholamines probably contributes relatively little to the generalised venoconstriction, but it may lead to stimulation of the reticular formation => restlessness and apprehensive
 - \circ $\;$ Loss of red cells decreases the O2 carrying power of the blood
 - The blood flow in the carotid and aortic bodies is reduced
 - The resultant anaemia, stagnant hypoxia, as well as the acidosis STIMULATE THE CHEMORECEPTORS
 - Probably the main cause of RESPIRATORY STIMULATION IN SHOCK
 - Chemoreceptor activation also excites vasomotor areas in the medulla, increasing vasoconstrictor discharge
 - Increases in the level of circulating angiotensin II produced by the increase in plasma renin activity during haemorrhage:

Causes thirst by an action on the subfornical organ

- When the arterioles constrict and the venous pressure falls because of the decrease in blood volume, a drop in capillary pressure takes place
 - ↓Hydrostatic pressure → influx of fluid into capillaries along most of their course helping to maintain the circulating blood volume

- LONG-TERM COMPENSATORY REACTIONS:
 - After a moderate haemorrhage, the circulating plasma volume is restored in 12-72 hours
 - When whole blood is lost, the haematocrit may not fall for several hours after the onset of bleeding
 - EPO appears in the circulation and the reticulocyte count increases, reaching a peak in 10 days
 - Red cell mass is restored in 4-8 weeks
 - Increased production of 2,3 DPG, which causes haemoglobin to give more O2 to the tissues

• **REFRACTORY SHOCK**:

- In this condition, shock persists for hours and gradually progresses to a state in which no response to vasopressor drugs takes place and in which, even if the blood volume is returned to normal, cardiac output remains depressed
- Various positive feedback mechanisms contribute to the production of refractory shock:
 - Severe cerebral ischaemia leads eventually to depression of the vasomotor and cardiac areas of the brain
 - Causes vasodilation and reduction of the heart rate, both of which DROP BLOOD PRESSURE FURTHER, leading to further reduction in cerebral blood flow
 - In severe shock, coronary blood flow is reduced because of the hypotension and tachycardia, even though the coronary vessels are dilated
 - The myocardial failure makes the shock and acidosis worse
 - This in turn leads to further depression of myocardial function
- A late complication of shock that can be fatal is pulmonary damage with the production of **ARDS**
 - This syndrome is characterised by acute respiratory failure with a high mortality
 - Can be triggered not only by shock but by:
 - Sepsis
 - Lung contusion
 - Other forms of trauma
- OTHER FORMS OF HYPOVOLAEMIC SHOCK:
 - Breakdown of skeletal muscle (RHABDOMYOLYSIS) is a serious additional problem when shock is accompanied by extensive muscle crushing (CRUSH SYNDROME)
 - Kidney damage is also common in this syndrome

- It is due to accumulation of myoglobin and other products from reperfused tissue in kidneys in which glomerular filtration is already reduced by shock
- The products damage and clog the tubules, frequently causing anuria

• BURN SHOCK:

- Loss of plasma as exudate from the burned surfaces
- Since the loss is plasma and not haemoglobin, haematocrit may actually RISE due to haemoconcentration
- Also causes increases in metabolic rate
- High mortality rates still persist
- \circ $\,$ OTHER CAUSES:
 - Adrenal insufficiency
 - DKA
 - Severe diarrhoea

DISTRIBUTIVE SHOCK:

- Blood volume is normal but the capacity of the circulation is increased by marked vasodilation
- Also known as "WARM SHOCK"
 - Because the skin is not cold and clammy
- Good example is anaphylactic shock
 - Large quantities of histamine cause increased capillary permeability and widespread dilation of arterioles and capillaries
- SEPTIC SHOCK:
 - Usually due to gram-negative bacteria
 - \circ $\;$ Has both distributive and hypovolaemic properties $\;$
 - ENDOTOXINS cause vasodilation and increased capillary permeability, with loss of plasma in the tissues

FAINTING:

- A third type of distributive shock is NEUROGENIC SHOCK
 - A sudden burst of autonomic activity produces vasodilation, pooling of blood in the extremities and loss of consciousness
 - These are called VASOVAGAL ATTACKS
 - Short lived and benign
 - About 25% of syncopal episodes are of cardiac origin and are due to either transient obstruction of blood flow through the heart or sudden decreases in cardiac output owing to various cardiac arrhythmias
 - Syncope is the presenting symptoms in 7% of patients with AMI

CARDIOGENIC AND OBSTRUCTIVE SHOCK:

- The pumping function of the heart is impaired to the point that blood flow to the tissues is no longer adequate to meet resting metabolic demands
 - CARDIOGENIC SHOCK
 - Most often due to extensive infarction of the left ventricle, but it can also be caused by other diseases that severely compromise ventricular function
- The symptoms are those of shock PLUS congestion of the lungs and viscera because the heart fails to put out all the venous blood returned to it
- A picture of congested shock is seen in obstructive shock

TREATMENT OF SHOCK:

- Should be aimed at correcting the cause and helping the physiologic compensatory mechanisms to restore an adequate level of tissue perfusion
- In haemorrhagic shock, treatment should include:
 - Early and rapid transfusion of adequate amounts of compatible whole blood
 - Saline is of limited temporary value
 - The immediate goal is restoration of an adequate circulating blood volume

HEART FAILURE:

PATHOGENESIS:

- Failure of cardiac output to meet the metabolic demands of the body in the context of normal filling pressures.
- Can be acute and associated with sudden death or chronic
- May involve primarily the right ventricle (COR PULMONALE)
 - \circ $\:$ Much more commonly it involves the larger, thicker left ventricle or BOTH VENTRICLES
- In chronic heart failure, cardiac output is initially inadequate during exercise but adequate at rest
- There are two type of failure:
 - SYSTOLIC:
 - Stroke volume is reduced because ventricular contraction is weak
 - Causes an increase in the end-systolic ventricular volume
 - EJECTION FRACTION (fraction of blood in the ventricle that is ejected during systole) FALLS
 - The initial response to failure is HYPERTROPHY of cardiac myocytes and thickening of the ventricular wall (CARDIAC REMODELLING)
 - The incomplete filling of the arterial system lead to increased discharge of the sympathetic nervous system and increased

secretion of renin and aldosterone =>sodium and water retention =>worsening of heart failure

- O DIASTOLIC:
 - Ejection fraction is initially maintained but THE ELASTICITY OF THE MYOCARDIUM is reduced so filling during diastole is reduced
 - This leads to inadequate stroke volume and the same cardiac remodelling and sodium and water retention that occur in systolic failure
- It needs to be noted that inadequate cardiac output in failure may be RELATIVE rather than absolute:
 - Large arteriovenous fistula
 - Thyrotoxicosis
 - Thiamine deficiency
 - In the above examples cardiac output may be ELEVATED in absolute terms but still be inadequate to meet the needs of the tissues
 - HIGH OUTPUT FAILURE

TREATMENT:

- Aimed at:
 - Improving cardiac contractility
 - Treating the symptoms
 - Decreasing the load on the heart
- Currently most effective treatment is INHIBITION OF ANGIOTENSIN II
 - Reduces circulating aldosterone level
 - Decreases blood pressure
 - Reduces the afterload
 - \circ Thought also to have a direct effect on the heart
- Diuretics reduce the fluid overload
- Beta blockers improve mortality
- Reducing venous tone with nitrates increases venous capacity so that the amount of blood returned to the heart is decreased, thus decreasing PRELOAD