OVERVIEW OF THE CIRCULATION

- FUNCTIONS OF THE CIRCULATION IS TO SERVICE THE NEEDS OF THE TISSUES:
 - Transport nutrients
 - o Remove waste
 - o Hormonal transport
- PHYSICAL CHARACTERISTICS OF THE CIRCULATION:
 - Circulation divided into two components:
 - Systemic
 - Pulmonary
 - Functional parts of the circulation:
 - Arteries ->transport blood under high pressure to the tissues
 - Arterioles->last small branches of the arterial system and act as control conduits through which blood is passed into the capillaries
 - Strong muscle wall, capable of vastly altering blood flow
 - Capillaries->function is to exchanges fluid, nutrients, electrolytes, hormones
 - Possess numerous minute pores increasing permeability
 - Venules->collect blood from the capillaries, gradually coalescing into progressively larger veins
 - Veins->function as conduits for transport of blood from the tissues back to the heart.
 - Also function as a major reservoir of blood
 - \circ $\;$ Volumes of blood in various parts of the circulation:
 - ~84% in systemic circulation, 16% in pulmonary circulation
 - Of systemic circulation, 2/3 in the veins, 13% in the arteries and 7% in the systemic arterioles and capillaries
 - Effect of cross-sectional area:
 - Veins have much larger cross-sectional area, facilitating storage of large volumes of blood
 - Velocity of blood flow is inversely proportional to vascular crosssectional area, hence high rate of the flow in the aorta (33cm/sec) versus slow flow in the capillaries (0.3mm/sec)

Resistance to Blood Flow

Poiseuille equation
R =
$$\frac{8\eta L}{\pi r^4}$$

R = resistance

 η = viscosity of blood

L = length of blood vessel

r⁴ = radius of blood vessel raised to the fourth power

If radius decreases by one half, resistance increases by 16-fold (= 2⁴)!!!

 $(\pi r^4 = area)$

- Pressures in the various portions of the circulation:
 - MAP in the aorta is high (100mgHg)
 - As blood flows through the systemic circulation, its mean pressure falls progressively to zero by the right atrium
 - Systemic capillaries:
 - Arteriolar end 35 mmHg, venous end ~10mmHg
 - A pressure low enough that little of the plasma leaks out of the porous capillaries
 - Pulmonary circulation:
 - Much lower pressure:
 - Systolic 25mmHg, diastolic 8
 - o MAP 17mmHg
 - Yet same volume of blood must flow through
 - Lower pressure allows greater time for oxygen exchange at the alveolus
- Systemic: 120/80 (100)
- Pulmonary: 25/8 (15)
- BASIC THEORIES OF CIRCULATORY FUNCTION:
 - The blood flow to each tissue of the body is almost always precisely controlled in relation to tissue needs:
 - Active tissues may need up to 20-30 times the resting level of cardiac output
 - Heart can only normally increase output by 7 fold

- Thus it is not possible to increase the blood flow everywhere in the body when a particular tissue demands increased flow
- Microvessels continuously monitor tissue needs via:
 - Availability of oxygen
 - Accumulation of CO2 and other waste products
 - These in turn act directly on local vessels
- Cardiac output is controlled mainly by the sum of all local tissue flows.
- In general, arterial pressure is controlled independently of either local blood flow control or cardiac output control:
 - For example, if pressure falls significantly, within seconds a barrage of nervous reflexes elicit a series of circulatory changes to raise the pressure back toward normal
 - The nervous signals increase the force of heart contraction, initiate contraction of venous reservoirs and facilitate generalised contraction of the arterioles, so more blood accumulates in the arterial tree
 - Kidneys play a role over prolonged control of BP
- RELATIONSHIPS BETWEEN PRESSURE, FLOW AND RESISTANCE:
 - Flow through a vessel is determined by two factors:
 - Pressure difference of the blood between the two ends of the vessel
 - The impediment to blood flow through the vessel (vascular resistance)
 - Flow through a vessel can be calculated according to **OHM'S LAW**:
 - FLOW = CHANGE IN PRESSURE/RESISTANCE
 - Essentially blood flow is directly proportional to the pressure difference but inversely proportional to the resistance
 - Blood flow means simply the quantity of blood that passes a given point in a given period of time
 - 5L/MIN
 - Blood flow also equates to cardiac output
- LAMINAR FLOW OF BLOOD IN VESSELS:
 - When blood flows at a steady rate through a long , smooth vessel, it flows in STREAMLINES, with each layer staying the same distance from the vessel wall
 - Opposite to turbulent flow, blood flowing in all directions and continually mixing within the vessel
 - When laminar flow occurs, the velocity of flow in the centre of the vessel is greater than that toward the outer edges
 - PARABOLIC VELOCITY PROFILE
 - Caused because molecules touching the vessel wall hardly move because of adherence to the wall, with progressively increasing slippage

- RESISTANCE TO BLOOD FLOW:
 - Resistance is the impediment to blood flow in a vessel
 - If the pressure difference between two points is 1mmHg and the flow is 1ml/sec, the resistance is said to be one peripheral resistance unit (PRU)
 - TPR usually 1 PRU, but can increase to 4 PRU
 - Pulmonary resistance generally 0.14 PRU (allows same flow of blood at much lower pressures.
- CONDUCTANCE:
 - Conductance is a measure of the blood flow through a vessel for a given pressure difference
 - Inversely proportional to resistance
 - Conductance = 1/resistance
- DIAMETER CHANGES AND CONDUCTANCE:
 - Slight changes in the diameter of a vessel changes the vessels ability to conduct blood tremendously
 - Roughly speaking, conductance is proportional to diameter^4
- POISEUILLE'S LAW:
 - In very small vessels, the central, very rapidly moving portion of blood DOES NOT occur as essentially all the blood is near the wall
 - **Poiseuilles's Law** states:
 - Resistance = (8 x viscosity x length) / (Pi x radius power 4)
 - Flow = pressure / resistance
 - Flow = Pi x change in pressure x r^4 / 8 x viscosity x length
 - Blood flow is <u>directly proportional</u> to:
 - The fourth power of the radius
 - Pressure
 - Inversely proportional to
 - Viscosity
 - Length of the vessel
 - About 2/3 of the total systemic-arteriolar resistance is in the small arterioles
 - Strong walls of arterioles allow large change in internal diameter and hence large change in blood flow across them
 - Also of note, the greater the viscosity, the less the flow
 - Hence, increased haematocrit (as in polycythaemia) can decrease flow
 - At normal haematocrit (0.40, i.e 40% of blood is cells), the viscosity of blood is 3 times that of water