PATH VIVAS

APOPTOSIS

Definition Programmed cell death

Pathology

Highly regulated intracellular sequence of events Activation of enzymes with degradation of intracellular nucleic acid and organelles Cell membrane remains intact but may bleb to form apoptotic bodies Targetted for phagocytosis – usually my macrophages No cell contents leaks out, so there is no surrounding inflammation

Initiators

Extrinsic: TNF receptors + FAS receptor activation \rightarrow caspase activation

Intrinsic: mitochondrial breakdown \rightarrow release of pro-apoptotic mediators into cytoplasm \rightarrow activation of caspases

Caspases act as final common pathway \rightarrow **proteolysis and cleavage of nucleic acid**.

Causes

Physiological:Programmed cell death during embryogenesisApoptosis of lymphocytes that show self-reactivity (i.e. central tolerance)Death of cells that have served their purpose (e.g. neutrophils)

Pathological:

Death of **mutated cells** / cells that have accumulated DNA abnormalities Death of infected (**virus**) cells by interaction with NK cells / cytotoxic T cells Viral hepatitis

Cellular changes

Cell shrinkage Chromatin condensation Formation of cytoplasmic blebs and apoptotic bodies Phagocytosis by macrophages

ATROPHY

Definition

Decrease in organ/tissue size due to an decrease in both cell size and number Can be physiological / pathological

Causes

Decreased workload Decreased innervation Decreased blood supply Decreased nutrition Loss of endocrine stimulation (e.g. endometrial atrophy) Aging

Mechanism

Decreased protein / organelle synthesis Increased protein degradation and autophagy

PATHOLOGICAL CALCIFICATION

2 types:

Dystrophic calcification: normal levels of calcium, but deposited in areas of abnormal tissue. E.g deposition of calcium in atheromatous lesions E.g. calcific AS

Metastatic calcification: abnormally high levels of calcium, deposited in normal tissue E.g. Multiple myeloma \rightarrow calcification of gastric mucosa / nephrocalcinosis / pulmonary calcinosis

Causes of hypercalcaemia

Elevated PTH: Hyperparathyroidism, PTH secreting tumours

Destruction of bone: Multiple myeloma, boney mets

Vit D related disorders: Excess vitamin D Granulomatous disorders (e.g. sarcoid)

Renal dysfunction Secondary / tertiary hyperPTH High phosphate

MECHANISMS OF CELLULAR INJURY

What happens inside cells when they are injured

Mitochondrial dysfunction ↓ATP due to ↓Ox phos ↓Na-K pump → Na influx, K efflux → cell swelling Ca influx / release from intracellular stores → activation of proteolytic enzymes and enzymes that degrade nucleic acid Cell membrane damage and loss of intracellular contents into interstitium Accumulation of ROS

What is a free radical

Chemical species with a single unpaired electron in its outer orbit E.g. superoxide E.g. hydrogen peroxide

Pathological effects of a free radical

Can culminate in <u>necrosis / apoptosis</u> Lipid peroxidation (\rightarrow membrane damage) Protein oxidation (\rightarrow effects enzyme structure) DNA lesions (\rightarrow breaks / cross-linkages)

HYPERPLASIA

Definition

Increase in the number of cells in a tissue/organ, to increase its size or to replace tissue that has been lost

Mechanisms

- ÎLocal production of growth factors
- **î**Growth factor receptors on cells
- ↑ ÎIntracellular signaling → ↑ transcription and translation of DNA into proteins, increased movement through the cell cycle

Types of hyperplasia

Physiological:

- Endocrine:
 - Uterus during pregnancy
 - o Breast tissue during puberty
- Compensatory:
 - Replacement of liver following liver injury / partial hepatectomy

Pathological:

- Tumour formation (benign / malignant)
- Viral infection e.g. HPV
- Excess hormones e.g. BPH, e.g. endometrial hyperplasia → abnormal uterine bleeding

HYPERTROPHY

Definition

Increase in size of tissue / organ due to an increase in cell size ↑ cellular contents and organelles, ↑ protein synthesis Can occur in both dividing and non-dividing cells

Triggers

Stimulation by hormones / growth factors $\Uparrow\$ Functional demand

Types

Physiological

- Lactating breast
- Uterus in pregnancy
- Increasingly used skeletal / cardiac muscle

Pathological:

- Heart in chronic HTN
- BPH

ISCHAEMIC INJURY

2 stages Reversible Irreversible

Sequence of events in reversible cell injury

Mitochondrial dysfunction + swelling \Downarrow ATP due to \Downarrow Ox phos \Downarrow Na-K pump \rightarrow Na influx, K efflux \rightarrow cell swelling \Uparrow intracellular Ca due to increase influx + release from intracellular stores \rightarrow activation of enzymes that degrade proteins + DNA Change in cytoskeletal architecture \rightarrow membrane blebbing Change in membrane permeability \Downarrow intracellular pH due to accumulation of lactic acid Ribosome detatchment from RER

- 1) ATP
- 2) Loss of cell membrane integrity
- 3) Defects in protein synthesis / fprotein degradation
- 4) DNA damage
- 5) Cytoskeletal damage

Irreversible injury

- Severe mitochondrial swelling
- Severe cell membrane disruption
- Lyosomal swelling, rupture, and autodigestion
- Nuclear: pyknosis \rightarrow karyohexxis \rightarrow karyolysis
- → Necrosis / apoptosis

Reperfusion injury

Increase in cellular injury once perfusion is restablished Formation of reactive oxygen + nitrogen species ↑↑↑Ca in cell Activation of inflammation + compliment cascades

Proteins release in cell injury:

Cardiac: troponin, CK-MB Liver: ALP, transaminases

METAPLASIA

Definition

Replacement of one cell type with a different cell type Is usually reactive to a change in environment / stimulus – theoretically the new cell type is better able to cope with the stressors of the new stimuli May be physiological / pathological

Mechanism

Due to reprogramming of stem cells / undifferentiated cells Due to changes in signaling from GFs / cytokines / extracellular matric proteins

Examples:

Barrets Oesophagus – change in SS of oesophagus to columnar gastric/intestinal mucosa Smoking / Vit A defic – change of ciliated columnar resp epith of resp tract \rightarrow SS Myositis ossificicans – muscle \rightarrow bone

Outcomes

Perisitence of new cell type Reversal Metaplasia – dysplasia – malignant transformation

NECROSIS

Cellular changes in necrosis

Irreversible injury <u>Cells swelling</u> Membrane blebbing <u>Disruption of membrane integrity</u> Myelin figures (whorls of cell membrane fragments) Nuclear changes: karyohexis, pyknosis, karyolysis Surrounding inflammation

Different types of tissue necrosis

Coagulative – architecture preserved due to enzymatic denaturation Liquifactive – loss of tissue architecture due to enzymatic digestion → lquid mass Caesous Fibrinoid – Ab-Ag immune complex mediated Fat necrosis

STEATOSIS

Definition

Abnormal accumulation of **triglycerides** in parenchymal cells

Organs commonly involved

Liver Heart Kidneys

Causes

Alcohol abuse DM Protein energy malnutrition (kwashiorkor) Toxins

In the liver it results from any of the stages in lipid handling from fatty acid entry, to esterification to form TAG, to metabolism within the liver or packaging for exportation from liver.

ACUTE INFLAMMATION

Vascular changes in acute inflammation

- Transient vasoconstriction
- Vasodilation opening of arterioles and capillary beds, histamine, NO action of vasc SM
- Increased vascular permeability mainly post-capillary venules
- Stasis/congestion due to extrusion of fluid and plasma protein \rightarrow increased viscosity
- î Expression of vascular adhesion molecules on endothelial cells for leukocytes

Mechanism of increased vascular permeability

- Endothelial contraction/retraction
 - o Gaps between endothelial cells in post-capillary venules
 - o Immediate transient response
 - Mediated by: histamine, LTs
- Direct endothelial injury
 - Rapid, long-lasting
 - E.g. burns, bacterial toxins
- Transcytosis
 - Îtransport of fluid + protein through endothelial cells
 - VEGF finumber of transport proteins (by stringing together vacuoles)
- New blood vessel formation
 - Formation of new leaky blood vessels by VEGF mediated angiogenesis

Characteristics of acute inflammation

- Relatively rapid onset, duration of hours-days
- Vasodilation
- Increased vascular permeability
- Loss of fluid + plasma protein into interstitial space
- Rolling, arrest, diapedesis of leukocytes (esp neutrophils) and movement along chemotactant gradient towards site of inflammation
- Pain
- Activation of complement cascade

Compliment

- Cascade of >20 proteins which are activated by classical, alternative, lectin pathway
- Common pathway is activation of C3 convertase
- C3a + C5a anaphylatoxin, degranulation of mast cells, chemoattractant
- C5b-C9 MAC
- C3a opsonisation, îphagocytosis

Croup

- Acute laryngotracheobronchitis
- Imflammation + spasm \rightarrow narrowing of airway
- Barking cough + inspiratory stridor
- Predominantly viral aetiology: parainfluenza, influenza, adenovirus

INFLAMMATORY MEDIATORS

Triggers for release of inflammatory mediators

- Mechanical irritation
- Microbial products
- Cell injury / necrosis

Mediators of acute inflammation + actions

Histamine: vasodilation, inc vasc perm, endoth activation PG: vasodilation, inc vasc perm Leukotrienes: inc vasc perm, chemotaxis, WC adhesion & activation PAF: vasodil, inc vasc perm, chemotaxis, WC adhesion, degran Complement: WC chemo and activation, vasodilat Cytokines (TNF, IL-1): endo activation (adhesion), fever, pain, hypotension, dec vasc resist Chemokines: chemotaxis, WC activation Kinins: inc vasc perm, vasodil, pain, sm m contraction

Histamine Bradykinin Serotonin LTs PAF PGs Lipoxins Compliment ROS NO Cytokines – IL-1, TNFα

ACUTE INFLAMMATION

3 main components of acute inflammation

- 1) Vasodilation increased blood flow
- 2) Increased vascular permeability esp post-capillary venules, allowing plasma proteins + leukocytes to leave the circulation
- 3) Emigration of leukocytes to the site of injury: initially neutrophils (first 24hrs), monocytes/macrophages in more prolonged inflammation (after 24hrs)

3 processes by which leukocytes move to site of injury

Multistep process, mediated by chemokines and adhesion molecules

- 1) Margination
 - Leukocytes take peripheral position in BVs
 - Rolling: along endothelium due to transient binding via selectins
 - Arrest: binding to endothelium via integrins
 - Examples of adhesion molecules: PCAM, selectins, integrins, CD31
- 2) Transmigration / diapedesis
 - Movement through interendothelial spaces of post-capillary venules
 - Secretion of collagenases which allow movement through the BM
- 3) Chemotaxis
 - Movement of leukocyte down a chemoattractant gradient
 - Movement mediated by actin-myosin cytoskeleton of the leukocyte

Followed by leukocyte activation: e.g. neutrophil phagocytosis and enzyme release

Examples of chemoattractants

- Endogenous:
 - o Compliment (C3a, C5a)
 - o Leukotrienes
 - Cytokines, interleukins
 - o Complement
 - o Histamine
- Exogenous:
 - Bacterial products, e.g. LPS

Which chemical mediators are responsible for pain, fever, tissue damage:

- Fever: IL-1, TNFα, acting at OVLT in brain to induce PG production
- Pain: histamine, bradykinin, CGRP, substance P
- Tissue damage: lysosomal enzymes, ROS, NO

Cell types in different kinds of inflammation

- Neutrophils: acute inflammation (first 24hrs) may persist for 4 days in pseudomonal infections
- Monocytes / macrophages: >24hrs
- Lymphocytes: viral
- Eosinophils: hypersensitivity

Why do neutrophils predominate in acute inflammation?

- More numerous in blood
- Greater response to chemokines
- Greater affinity for adhesion molecules
- Shorter ½ life

What is the role of leukocytes in acute inflammation?

- **Receptor mediated recognition** of target materials opsonins, PAMPS
- **Phagocytosis** (neutrophils, macrophages)
- Induction of apoptosis / killing of infected cells (NK, CD8 T) ROS / NO / Fas-Caspases / lysosomal enzymes
- Induction of humoral response / activation of B cells to produce Ab

INFLAMMATION

Different morphological types of acute inflammation

- Serous:
 - o Thin fluid from plasma or mesothelial lining cells
 - $\circ \quad \text{E.g. burns}$
 - \circ E.g. effusions
- Fibrinous:
 - Severe inflammation with greater vascular permeability allow exudation of larger proteins like fibrin
 - E.g. pericardial, pleural, meninges

- Suppurative / purulent:

- Purulent exudate, with neutrophils, necrosis + oedema
- E.g. staph OM / SA
- E.g. appendicitis
- Ulceration:
 - Local defect in mucosal surface
 - o E.g. acute stress ulceration of gastric mucosa

Possible outcomes of acute inflammation

- Resolution +/- scarring
- Chronic inflammation
- Abscess formation
- Fibrosis

CHRONIC INFLAMMATION

Characteristics of chronic inflammation

- Inflammation for prolonged period (>1 week)
- Macrophage is the hallmark cell
- Also lymphocytes + plasma cells
- Simultaneous processes of:
 - Active inflammation \rightarrow tissue destruction
 - Attempts at tissue repair (angiogenesis + fibrosis)

Cells present in chronic inflammation

- Monocytes / macrophages
- Granuloma: epilelioid cells / multinucleate giant cells
- Plasma cells
- Th lymphocytes (CD4 + CD8)
- Eosinophils
- Neutrophils (sparse)

What mediates ongoing inflammation

- Ongoing expression of adhesion molecules + chemotactic factors leading to **continued recruitment** of macrophages. E.g. macrophage activating factor
- Local proliferation of macrophages
- Immobilisation of macrophages at the site of inflammation

Causes of chronic inflammation

- Persistent infection:
 - **TB**
 - o OM
- Prolonged exposture to irritant:
 - Foreign body
 - Silica → silicosis
 - o Endogenous: lipid in atheroma
- Autoimmune:
 - o RA
 - o SLE

Products released by macrophages in chronic inflammation

- Products causing tissue damage:
 - o ROS
 - **NO**
 - Proteases (elastases, collagenases)
 - AA metabolites (PG, LT, TxA2)
- Products causing fibrosis:
 - \circ TGF- β
 - o FGF
 - VEGF

COMPLEMENT

What is the complement system

- Plasma proteins involved in immune response
- Complement proteins 1-9 present in plasma in active form
- Role in defending the body from microbes

Modes of activation

- Alternate pathway: complement activation by exposure to microbial cell wall components (e.g. LPS)
- Classical pathway: complement activation by exposure to immune complex (Ag + Ab)
- Lectin pathway: activation by microbial carbohydrates, recognized plasma mannosebinding lectin

Final common pathway is activation of C3 convertase which cleaves C3

How does complement mediate inflammation

- C3a + C5a (anaphylatoxins):
 - Vascular:
 - Mast cell degranulation + histamine release
 - Vasodilation
 - Increased vascular permeability
 - Leukocyte:
 - Activation + chemoatractants
- 35b:
 - o MAC
 - C5b-C9 inserts pore into cell membrane → lysis
- C3b:
 - o Opsonisation: allows recognition and activation by professional phagocytes

Arthus reaction

- T3 hypersensitivity reaction
- Mediated by localized excess of Ab \rightarrow immune complex formation
- Can precipitate, resulting in vasculitis

IMMUNE MEDIATORS

Which mediators of inflammation are derived from cells?

- Preformed:
 - \circ Vasoactive amines
 - Histamine (mast cells)
 - Serotonin (platelets)
- Newly synthesized:
 - \circ AA metabolites:
 - PGs
 - TXA2
 - LTs
 - Lipoxins
 - PAF
 - o ROS, NO
 - Cytokines (IL1, TNF α)

Which cells release histamine?

- Mast cells
- Basophils
- Platelets

Effects of histamine?

- Vasodilation arterioles
- Increased vascular permeability

ANGIOGENESIS

What is angiogenesis?

- Process of new blood vessel formation
- 2 mechanisms:
 - o Branching and extension of preexisting vessels
 - Recruitment of endothelial progenitor cells (EPCs)
- EPCs are present in:
 - o Bone marrow
 - o Pre-existing vessels

Examples of angiogenesis

- Wound healing
- Fracture healing
- Tumour growth
- Embryogenesis

Steps in angiogenesis

- Vasodilation
- Proteolytic degradation of BM of parent vessel, allows formation of capillary sprout
- EPCs cells migrate to angiogenic stimulus
- Proliferation of endothelial cells
- Maturation of EPCs and linkage with preexisting vessel endothelial cells
- Capillary formation with lumen
- Recruitment of periendothelial cells for support (pericytes, smooth muscle cells)

Factors involved

- VEGF
- Angioproteins 1 + 2
- TGF β

Inhibitors of angiogenesis

- Endostatin, produced by proteinases, inhibits endothelial proliferation + angiogenesis

FIBROSIS

Pathogenesis of fibrosis

- Excess deposition of collagen + ECM
- Trigger:
 - \circ Chronic inflammation
 - **Persistent stimulus** infection / FB / autoimmune

- Cells which secrete mediators:

- Macrophages
- Lymphocytes
- o Platelets
- o Endothelium
- Mediators released
 - o FGF
 - o PDGF
 - \circ TGF β
 - Cytokines (IL1, TNF α)
- Result:
 - <u>Recruitment + proliferation of fibroblasts</u>
 - Lay down collagen + ECM, and inhibit their breakdown
- TGFβ is always involved
 - Attract monocytes / macrophages
 - o Fibroblast activation and proliferation
 - Increased collagen + fibornectin synthesis
 - o Inhibition of matrix metalloproteinases

Examples

- Cirrhosis
- Pulmonary fibrosis
- Glomerulonephritis
- Chronic pancreatitis

SCAR FORMATION

Process of scar formation

- 1) Haematoma (<24hrs)
- 2) Inflammation (<24hrs)
- 3) Proliferation \rightarrow granulation tissue (first week)
- 4) Maturation (weeks)
- o Haematoma
- o Inflammation
 - \circ $\;$ Infiltration in inflammatory cells which removed damaged and dead tissue
 - Neutrophils (<24hr) \rightarrow macrophages (by day 3)
- o Re-epithelialisation
 - \circ $\;$ Invasion of epithelial spurs from wound edges towards the midline
- Granulation issue
 - Fibroblasts
 - Migration + proliferation of parenchymal + CT cells : e.g. fibroblasts
 - Synthesis of ECM + collaged deposition
 - Collagen III → Collagen I
 - Elastic tissue
- o Angiogenesis
 - Blood vessels initially leaky → oedema
 - o Angiogenesis regresses over coming weeks

o Tissue remodeling

- o Alteration in cellularity
- o Reduced vascularity
- Breakdown of ECM by MMPs
- $\circ \quad \text{Would contraction} \quad$
 - Myofibroblasts
- Acquisition of **wound strength** (crosslinking collagen etc)

How do wounds recover tensile strength?

◦ Collagen III \rightarrow 1

- Collagen formation > degradation
- o Structural modification: crosslinking of collagen + increased fibre size

Timeframe of recovery of tensile strength

- o 1 week: 10% tensile strength
- o 3 months: 70%
- No significant improvement after this

Factors influencing scar formation

- Local:
 - Type of tissue
 - Extent of tissue damage / loss
 - Blood supply
 - o Presence of FB
 - Presence of infection
 - Movement of wound edges
- Systemic:
 - o Systemic disease: diabetes, steroids
 - Systemic infection
 - Systemic hypoperfusion / anaemia
 - Nutrition (vit C, protein, copper, zinc)
 - o Genetics: e.g. keloid
 - o Age

Wound contraction

- Usually in large surface wounds
- Mediated by myofibroblasts
- Helps being dermal edges together
- ↓wound SA
- Can restrict joint movement

Role of platelet-derived growth factor (PDGF) in wound healing

- Monocyte chemotaxis
- Fibroblast migration and proliferation
- Collagen synthesis
- Collagenase secretion (remodeling)

COAGULATION CASCADE

What is coagulation cascade?

- Integral to heamostasis
- Series of reactions which convert inactive pro-enzymes into active enzymes
- Culminates in the activation of thrombin, which cleaves fibrinogen \rightarrow fibrin
- Fibrin is an insoluble fibrillar protein responsible for clot formation
- Activation of this series of reaction is via either extrinsic (tissue factor activated) or intrinsic pathways.
- Extrinsic: activated by TF exposed at site of injury
- Intrinsic: activated by F12
- Pathways converge on activation of F10 (common pathway = F1,2,5,10 + calcium)

What mechanisms restrict activation of coag cascade?

- Restriction of activation of cascade to areas of exposed phospholipids
- Natural anticoagulants:
 - Protein C / S
 - Inhibit F5 + 8
 - Vitamin K dependent
 - \circ Thrombomodulin
 - Coverts thrombin from pro-coagulant to anticoagulant by making it activate protein C
 - o Antithrombin III
 - Inactivates F 9,10,11,12
 - ATIII is activated by binding endogenous (endothelium) or exogenous heparin
 - Plasmin:
 - From inactive plasminogen by action of F12 or t-PA
 - Breaks down fibrin → FDPs
 - FDPs have their own weak anticoagulant activity
 - Tissue-factor pathway inhibitor

Endogenous antiplatelet mechanisms

- Intact endothelium
- PGI2
- NO
- ADPase

Endogenous factors preventing clot formation

- Antiplatelet
- Anticoagulant
- Fibrinolytic

Triggers for DIC

- Sepsis (endotoxin gram -ve, meningococcal sepsis, rickettsia)
- Trauma
- Obstetric complication (e.g. amniotic fluid embolism, retained dead fetus)
- Burns
- Malignancy (e.g. APML)
- Toxins (e.g. snake envenomation)

How does endothelial injury initiate DIC

- Exposure of subendothelial matrix →
 - o Platelet activation
 - Coagulation cascade
- Direct trauma to endothelium by:
 - Immune complex
 - Microorganisms
- Cytokine mediated endothelial dysfunction
 - TNF \rightarrow <u>(hexpression of tissue factor and release into the circulation</u>
 - TNF → \uparrow endothelial adhesion molecules → \uparrow leukocyte attachment → \uparrow endothelial damage

Pathological process

- 2 triggers:
 - Widespread endothelial injury
 - Systemic release of tissue factor / thromboplastic substances
- Widespread activation of platelets and both arms of the coagulation cascade
- Results in consumptive coagulopathy → deficiency of factors + platelet + fibrinogen → bleeding diathesis
- Fibrin deposition in the microcirculation → thrombi → ischaemia
- Simultaneous activation of fibrinolytic system → bleeding
- MAHA secondary to thrombi in the microcirculation
- Consequence: ischaemia + bleeding

DIC

Presentation of DIC on FBC + blood film:

- ↓Platelet
- ↓Fibrinogen
- **ÎFibrin degradation products**
- ÎBleeding time, ÎPT, ÎAPTT
- MAHA with schistocytes

EMBOLISM

What is an embolus?

Detached intravascular mass

Carried in blood from **site of origin** to **distant site**, with impaction at this distant site Can be solid, liquid, gas

Different types of embolus

- Thrombus / clot
- Tumour
- Amniotic fluid
- Cholesterol
- Gas (decompression sickness / iatrogenic)

Can be systemic or pulmonary

What is a systemic thromboembolism

• Embolus consisting of thrombus in the systemic arterial circulation

Sources of systemic thromboembolism

- Intracardiac mural thrombus (80%)
 - 2/3 LV
 - ¼ LA
- Thrombus from vascular artheroma (carotid / AA)
- Vegetations on cardiac valves
- VTE via PFO (paradoxical embolus)

Difference in lodgement of venous vs. arterial emboli

- Venous: usually impacts in pulmonary vascular bed
- Arterial: multiple sites of distal impaction:
 - Lower limb (75%)
 - Brain (10%)
 - UL + other viscera

Pathology of infarcts arising from emboli

- Ischaemic coagulative necrosis (except brain, liquefactive necrosis)
- White infarct:
 - Solid / dense organs
 - End arterial circulation
- Factors affecting infarction:
 - Degree of collareralisation
 - \circ Speed of onset of occlusion
 - Degree of vessel occlusion
 - Sensitivity of tissue to hypoxia
 - O2 content of blood

VENOUS THROMBOEMBOLISM

From where do pulmonary emboli derive

- Vast majority (95%) are deep veins of legs, normally above the knee
- Pass to RA, RV, pulmonary circulation
- Size will determine site of distal impaction

Risk factors for PE

- Intrinsic thrombophilia:
 - o Genetic: F5 leiden
 - Acquired: e.g. malignancy, SLE
- Vessel trauma / endothelial disruption
- Immobility
- FHx (genetic component)
- Personal Hx
- Hormone (OCP, HRT)

Or

- Primary: genetic thrombophilia
- Secondary: everything else

Clinical outcomes of PE

- Most are clinically silent (60-80%)
- SOB, tachycardia, fever
- Haemoptysis
- Collapse
- Arrest
- PAH + cor pulmonale

Fat embolism

- Associated with long bone fractures (very occasionally soft tissue injuries)
- 90% of major fractures
- 10% are symptomatic
- <10% of which are fatal
- Occurs 1-3 days after injury
- Fat embolism syndrome (symptomatic)
 - Pulmonary insufficiency (desats, îîRR)
 - Neurological symptoms (restlessness, irritability, coma)
 - Anaemia (haemolysis, MAHA)
 - Thrombocytopaenia (aggregation \rightarrow consumption \rightarrow petechial rash)

HAEMOSTASIS

Haemostasis:

- 1. Vasoconstriction
- 2. Primary haemostasis (platelet plug)
- 3. Secondary haemostasis (fibrin clot)
- 4. Balance between clot formation (thrombin) and dissolution (plasmin)
- 1. Vasoconstriction
 - Arteriolar
 - Neurological: reflex neurogenic
 - Humoral: endothelin
- 2. Primary haemostasis (platelet plug)
 - Subendothelial ECM exposed \rightarrow adhesion + secretion + aggregation
- 3. Secondary haemostasis (fibrin clot)
 - TF activation of extrinsic pathway via F7 \rightarrow fibrin clot
- 4. Balance between clot formation (thrombin) and dissolution (plasmin)
 - tPA + thrombomodulin regulate

Polymerised fibrin + platelet combine to form mature clot

Formation of primary haemostatic plug

Role of platelets in haemostasis:

- Primary haemostatic plug
- Privides a surface to recruit + concentrate activated coagulation factors

Formation of primary haemostatic plug

- Primary haemostasis is formation of <u>platelet plug</u>
- Phases of platelet involvement:
 - 1. Adhesion (shape change)
 - 2. <u>Secretion</u> (release reaction)
 - 3. Aggregation
- Endothelial damage exposes underlying ECM:
 - o Collagen
 - o vWF
- Platelets **adhere** to subendothelial ECM:
 - \circ GP1b vWF (on collagen)
- Activation of platelet:
 - Shape change (more round)
 - Exposure of –ve charged phospholipids on platelet surface, essential for Ca binding and activation of intrinsic pathway of coagulation
 - Secretion (preformed granules):
 - ADP
 - TxA2
 - Ca

- -vely charge phospholipid
- \circ ADP binds ADP-R (P2Y12) \rightarrow positive feedback activation of platelets
- Platelet aggregation:
 - Stimulated by TXA2 + ADP
 - GP2b3a fibrinogen
 - Initial aggregation is reversible
 - Platelet contraction + thrombin conversion of fibrinogen→fibrin forms the irreversible secondary haemostatic plug.

Platelet granules:

- Alpha granules (fibrinogen, factors V and VIII, platelet factor 4, PDGF, TGFβ)
- **Delta granules / dense bodies** (ADP and ATP, ionised calcium, TXA2, histamine, serotonin, adrenaline).

Conversion of primary haemostatic plug \rightarrow secondary haemostatic plug:

- Thrombin binds to platelets expressing ADP + TXA2
- Fibrin formation which locks platelets into clot via GP2b3a receptors
- Platelet contraction

Initial adhesion

- vWF bridges subendothelial collagen and platelet surface receptor Gp1b
- Also collagen binds directly to platelet collagen receptors

Activation of coagulation cascade (secondary haemostasis)

- Triggers:
 - Endothelial injury
 - \circ Exposure of subendothelial tissue factor / thromboplastic substances
- Acitvation of intrinsic (F12) + extrinsic (F7) clotting cascade
- Series of amplifying enzymatic reactions converting pro-enzyme to active enzyme
- Final common pathway is 10, 5, 2, 1
- Result is activation of thrombin and conversion of fibrinogen \rightarrow fibrin

• Fibrin polymerises forms a network – fibrin clot

What does PT measure

- Extrinsic pathway + common pathway
- Factors 7 → 10, 5, 2, 1
- Extrinsic is Vit K dependent

What does APPT measure

- Intrinsic pathway + common pathway
- Factors 12, 11, 9, 8 → 10, 5, 2, 1

1 = Fribrinogen

- 2 = Prothrombin
- 3 = Tissue factor
- 4 = Calcium
- 12 = Hageman factor

Tell me about the final common pathway:

- I + E pathways converge on activation of F10
- Using Ca + activated F5 as cofactors, F10 activates prothrombin \rightarrow thrombin
- This occurs on the surface of damaged endothelium or activated platelets
- Thrombin (2a) converts fibrinogen (1) \rightarrow fibrin (1a) in presence of Ca
- Thrombin also activates F13 \rightarrow crosslinking of fibrin

Fibrinolysis

- Plasminogen \rightarrow plasmin
- Plasmin degrades fibrin → FDPs (e.g. D-dimer)
- Plasminogen activated by:
 - o t-PA
 - o **F12a**
- t-PA
 - Derived from endothelial cells
 - Most active when bound to fibrin
 - Urokinase is like t-PA, circulating serine protease
- α2-plasmin inhibitor
 - o Inactivates free plasmin

INFARCTION

Define infarction

• Ischaemic necrosis caused by arterial, or venous, occlusion

Mechanisms leading to infarction

- Arterial thrombosis (e.g. from atherosclerotic plaque rupture)
- Embolus
- Arterial vasospasm
- Extrinsic vascular compression
- Torsion of vessel
- Venous obstruction and congestion

Factors effecting infarct development

- Nature of blood supply (dual vs. end-arterial)
- Degree of collateralisation
- Speed of onset of occlusion
- Degree of vessel occlusion
- Sensitivity of tissue to hypoxia
- O2 content of blood

ISCHAEMIC INJURY AT A CELLULAR LEVEL

What constitutes irreversible ischaemic injury

- Irreparable structural + intracellular damage
- → Necrosis / apoptosis
- At a cellular level, consistent changes are:
 - o Severe distruption of cell membrane with loss of integrity
 - Mitochondrial swelling with inability to generate ATP via ox phos
 - Lysosomal swelling
- Other features of cell injury
 - Cellular swelling
 - Failure of Na-K ATPase
 - Nucelar changes: pyknosis \rightarrow karyohexxis \rightarrow karyolysis
 - o Myelin figures

Mechanism of hypoxic cell injury

- Hypoxia $\rightarrow \Downarrow$ mitochondrial ox phos $\rightarrow \Downarrow$ ATP
- Failure of Na-K pump
- Failure of glycogen + protein synthesis
- Accumilation of intracellular Ca \rightarrow activation of proteases and degrading enzymes
- Disruption of cytoskeleton
- Loss of cell membrane integrity, cell surface blebs, myelin figures
- Swelling of intracellular organelles
- Seperation of ribosomes from ER
- Irreversible changes:
 - o Swollen mitochondria
 - o Severe cell membrane disruption
 - Lyosomal swelling, rupture, and autodigestion
 - Nuclear: pyknosis \rightarrow karyohexxis \rightarrow karyolysis

Ischaemic vs. hypoxic cell injury

.

- Ischaemic no provision of O2, substrates, no removal of waste products

 Anaerobic resp not possible
 - Hypoxic continued provision of substrates and removal of waste
 - Anaerobic resp still possible
- Therefore ischaemic often more damaging than hypoxic

OEDEMA

Definition

• Increased interstitial fluid

Causes

- Inflammatory exudative:
 - Infection
 - o Immune
 - Necrosis
 - **FB**
 - Traumatic
- Non-inflammatory transudative, Starling's law:
 - **îHydrostatic pressure**:
 - Generalised:
 - CCF / restrictive pericarditis
 - Hypervolaemia fluid overload
 - Na + water retention: renal insufficiency / 1R-A-A
 - Localised venous:
 - Venous obstruction e.g. DVT
 - Localised arteriole:
 - Heat
 - Lymphatic obstruction
 - \circ \Downarrow **Oncotic pressure**
 - Nephrotic syndrome
 - Liver failure
 - Protein malnutrition
 - Protein losing enteropathy

Exudate vs. transudate

- Inflammatory \rightarrow exudate:
 - High protein
 - High LDH
- Non-inflammatory → transudate:
 - Low protein
- Defined by Light's criteria

What factors determine movement of fluid between vascular + interstitial spaces?

• Starling's forces

$$J_{\vee} = K_f \left[(P_c - P_i) - \sigma(\pi_c - \pi_i) \right]$$

where:

- J_V Net fluid flux
- K Filtration coefficient
- P_c Capillary hydrostatic pressure P_i Interstitial hydrostatic pressure
- σ Reflection coefficient
- π_{c} Capillary oncotic pressure
- π_i Interstitial oncotic pressure
- Hydrostatic pressure
- Colloid osmotic pressure (oncotic pressure)
- Permeability of capillary walls
- Net balance is normally quite neutral:
 - Out at arteriolar end
 - In at venous end
 - o Small amount returned to circulation via lymphatics

Clinical features of heart failure:

- Lung:
 - o OPN
 - o PND
 - Dyspnoea with ↓ET
 - o Pulmonary oedema / pleural effusions
- Cardiac:
 - o Displaced apex
 - \circ 3rd HS
 - $\circ \quad \mathsf{JVP} \text{ elevation}$
 - o Murmurs
- Renal:
 - $\circ \quad \text{Fluid retention} \quad$
 - o AKI
- Liver:
 - o Hepatic congestion
 - $\circ \quad \text{Cirrhosis}$
 - Ascites
- Brain:
 - Confusion secondary to hypoxia

Pathogenesis of cardiogenic oedema

- ↓co
- $\rightarrow \Downarrow$ Renal perfusion + \uparrow sympathetic drive
- $\rightarrow \uparrow R$ -A-A (secondary hyperaldosteronism)
- $\rightarrow \uparrow$ Blood volume
- \rightarrow \uparrow Venous pressure

PLATELETS

Role of platelets in haemostasis:

- Primary haemostatic plug
- Privides a surface to recruit + concentrate activated coagulation factors

Formation of primary haemostatic plug

- Primary haemostasis is formation of <u>platelet plug</u>
- Phases of platelet involvement:
 - 4. Adhesion (shape change)
 - 5. Secretion (release reaction)
 - 6. Aggregation
- Endothelial damage exposes underlying ECM:
 - o Collagen
 - o vWF
- Platelets **adhere** to subendothelial ECM:
 - GP1b vWF (on collagen)
- Activation of platelet:
 - Shape change (more round)
 - Exposure of –ve charged phospholipids on platelet surface, essential for Ca binding and activation of intrinsic pathway of coagulation
 - Secretion (preformed granules):
 - Essential for aggregation:
 - ADP
 - TxA2
 - Essential for coagulation:
 - Ca
 - -vely charge phospholipid
 - ADP binds ADP-R (P2Y12) → positive feedback activation of platelets
- Platelet aggregation:
 - Stimulated by TXA2 + ADP
 - GP2b3a fibrinogen
 - Initial aggregation is reversible
 - Platelet contraction + thrombin conversion of fibrinogen → fibrin forms the irreversible secondary haemostatic plug.

Platelet granules:

- **Alpha granules** (fibrinogen, factors V and VIII, platelet factor 4, PDGF, TGFβ)
- **Delta granules / dense bodies** (ADP and ATP, ionised calcium, TXA2, histamine, serotonin, adrenaline).

Conversion of primary haemostatic plug \rightarrow secondary haemostatic plug:

- Thrombin binds to platelets expressing ADP + TXA2
- Fibrin formation which locks platelets into clot via GP2b3a receptors
- Platelet contraction

REPERFUSION INJURY

Definition

• Death of additional cells caused by reperfusion of ischaemic tissue, in addition to those damaged by ischaemic itself

Mechanisms of injury

Reactive oxygen / nitrogen species	Incomplete reduction of incoming O2
	Due to damaged mitochrondria
	In parenchymal + endothelial cells
	Action of oxidases $ ightarrow$ superoxide anions
Inflammation	Ischaemic cells $ ightarrow \hat{\mathbb{I}}$ expression of adhesion molecules
	+ cytokines
Complement cascade	Deposition of IgM in ischaemic tissues $ ightarrow$ activation of
	complement cascade (classical pathway) $ ightarrow$ cell
	damage
Mitochondrial dysfunction	Damage to mitochondrial membranes $ ightarrow$
	mitochondrial permeability transition $ ightarrow$ release of
	cytotoxic factors from mitochondria, and failure of ATP
	production
SHOCK

Definition

- Impaired tissue perfusion and consequent cellular hypoxia
- Consequent to failure of perfusion pressure (hypotension) due to:
 - Reduced CO
 - o Reduced effective circulating volume

Categories of shock

Cardiogenic	AMI / arrhythmia
Hypovolaemic	Haemorrhage / burns
Sepsis / SIRS	Infection, pancreatitis
Distributive	Anaphylaxis, Addisonian crisis
Obstructive	Tension pneumo, tamponade, PE
Neurogenic	Spinal injury

Stages of shock

- Non-progressive:
 - Reflex physiological mechanisms support vital organ perfusion
 - Baroreceptor
 - (f) Symp drive \rightarrow (f) HR, vaso+venoconstriction

 - ÎADH
 - Renal conservation of fluid with ↓UO
 - Thirst
- Progressive:
 - Tissue hypoperfusion + metabolic disturbance (e.g. lactic acidosis)
 - Anaerobic metabolism → lactate
 - ↓Vasomotor response → peripheral blood pooling
 - Hypoxic cell injury
 - DIC
 - Organ failure
- Irreversible:
 - Non-reversible tissue + cellular injury
 - Even if tissue perfusion is restored, survival not possible due to extend of irreversible cell injury
 - At cellular + tissue level:
 - Lyosomal enzyme release
 - NO $\rightarrow \downarrow$ myocardial contractility
 - ATN → AKI
 - Ischaemic gut
 - Arrest + death

Clinical features of shock:

- îrr
- ÎHR
- \Downarrow BP, \Downarrow pulse pressure
- Cool peripheries, **î**CRT

- ↓uo
- Altered mental state

Blood loss vs. CO

Steep fall at 20% blood loss Death at 45% blood loss

GRAM NEGATIVE SEPSIS

Mechanisms

- Direct microbial injury
- Activation of host inflammatory responses in response to endotoxin
- Endotoxin binds to LPS binding protein in serum
- Complex does the following:

Direct endothelial injury + activation	
Innate immune system activation	Endotoxin – TOLL-like R
	Neutrophils
	Monocytes, macrophages
Inflammatory mediator release	IL1, 2
	ΤΝFα
	NO, PAF
	Reactive O2 species
Activation of complement cascade	
Activation of coagulation cascade	
Metabolic abnormalities	↑glucose, insulin resistance
Immune suppression (counter reg)	Anti-inflammatory mediators
	Leukocyte apoptosis

- Low dose endotoxin:
 - 1 Inflammation → 1 Clearance of bacteria
- Moderate dose:
 - Fever, procoagulant
- High dose:
 - o Septic shock

- Systemic vasodilation
- UCO (Ucontractility)
- Widespread endothelial injury \rightarrow DIC, ARDS

Outcomes of septic shock

- Hypotension
 - End organ failure:
 - \circ Cardiomyopathy
 - o AKI
 - o ARDS
- DIC
- Death

What factors affect extent + severity of shock

- Extent of infection
- Virulence of infection
- Host immune status
- Host comorbidities

DIC in shock

Pathological process

- 2 triggers:
 - Widespread endothelial injury
 - Systemic release of tissue factor / thromboplastic substances
- Widespread activation of platelets and both arms of the coagulation cascade
- Results in consumptive coagulopathy → deficiency of factors + platelet + fibrinogen → bleeding diathesis
- Fibrin deposition in the microcirculation \rightarrow thrombi \rightarrow ischaemia
- Simultaneous activation of fibrinolytic system → bleeding
- MAHA secondary to thrombi in the microcirculation
- Consequence: ischaemia + bleeding
- Compounded by stasis
- Altered levels of:
 - \circ Thrombomodulin
 - o Protein C
- $\[\] \]$ Fibrinolysis via plasminogen activator inhibitor

Vascular endothelial cell activation during shock:

1.	Vasodilation	
2.	Increased permeability	 Endothelial contraction/retraction Gaps between endothelial cells in post-capillary venules Immediate transient response Mediated by: histamine, LTs Direct endothelial injury Rapid, long-lasting E.g. burns, bacterial toxins
3.	Activation of coagulation cascade + thrombosis	 DIC = consumptive coagulopathy ↑Tissue factor production ↓Fibrinolysis Stasis

What is bacterial endotoxin

- Component of outer cell wall of gram –ve bacteria
- Lipopolysaccharide
- Normally gram –ve bacilli
- Generic fatty acid core + specific polysaccharide coat

Effect of septic shock on organ systems:

- Heart \Downarrow contractility, \Downarrow CO
- Large BVs vaso+venodilation
- Capillaries endothelial dysfunction, fpermeability, leukocyte accumilation
- Blood DIC
- Lungs ARDS
- Renal AKI (ATN)
- Liver failure
- Brain hypoxic brain injury

Chemical mediators involved in shock

Complement cascade	
Coagulation cascade	
Kallikrien-kininogen	Bradykinin
Arachidonic acid / eicosanoid	LTs, PAF, TXA2, PGs
Inflammatory cytokines	TNF, ILs
Vasoactive	Histamine, serotonin
Lysosomal enzymes	Proteases
Free radicals	Oxygen, nitrogen

VENOUS THROMBOSIS

Contributors to venous thrombosis

- Virchow's triad
 - Endothelial injury / dysfunction
 - Most important, may alone result in thrombosis, especially in areas of high flow
 - Alters dynamic balance between pro- and anti-thrombotic effects
 - Abdnormal blood flow / stasis
 - Turbulence / stasis
 - Brings platelets into contact with endothelium
 - Turbulance can cause endothelial injury
 - Prevents inflow of anticoagulant factors
 - Hypercoaguability
 - Congenital vs. acquired

Risk factors of venous thrombosis

Congenital	Antithrombin deficiency
	Prothrombin mutation
	Homocyteinaemia (MTHFR mutation)
	Protein C / S deficiency
	Factor V leiden
	Fibrinolysis defects
Acquired	Hypercoaguability:
	APLS
	Malignancy
	Hormonal (OCP)
	Pregnancy / post-partum
	• DIC
	Nephrotic syndrome
	Stasis:
	 Venous compression (e.g. pelvic mass, May-Thurner's)
	Lack of mobility
	Hyperviscosity states (PCRV)
	Endothelial injury:
	Venous catheterization (e.g. central line)
	Smoking
	Burns / fractures / trauma

Possible outcomes of venous thrombosis

- Dissolution (fibrinolysis)
- Organisation (inflammation \rightarrow fibrosis)
- Recanalization
- Propogation → vessel occlusion
- Embolism

B CELLS

Where a B cells located?

- Bone marrow
- LNs
- Spleen
- Circulating
- MALT

How do B cells respond to antigenic stimulus?

- Receptors for complement / Ig
- Conversion to plasma cells with assistance of Th2 cells
- Production of Ig

How are B cells stimulated in GvHD?

- Activation of Th2 T helper cells
- Production of IL4,5
- Differentiation of B cells to plasma cells and class switching
- Production of antibodies

HOST DEFENCES

GIT	Gastric acid
	Lytic pancreatic enzymes
	Bile detergents
	Mucosal barrier
	Secreted IgA
	Clearance by defecation
Resp	Nasal turbinates + mucous
	Coughing
	Ciliated epithelium – mucociliary escalator
	Secreted IgA
	Alveolar macrophages

What can disrupt the protective mechanisms of the resp tract?

- Congenital: Cystic fibrosis / Kartageners / Primary ciliary dyskinesia
- Smoking
- Aspiration
- Intubation
- Airway trauma / burns
- Airway infection

LYMPHOCYTES

Major subdivisions

- B cells
- T cells:
 - o CD4+ Th1
 - o CD4+ Th2
 - CD8+ cytotoxic T cell
 - Treg
- NK cells

Roles of lymphocytes

- Adaptive immunity
- Circulate widely
- Respond to antigens
- Can form effector or memory cells in response to antigen

T cells	Ag binds to TCR on T cells, CD3 co-receptor Ag needs to be presented on MHC1 (unprocessed) or MHC2 (processed) Costimulation with CD4 / CD8, CD40L, CD28
	Th – respond to antigen presented on MHC2 by APCs
	Tc – respond to antigen presented on MHC1 by all nucleated cells
Th1	Secrete IL2 + IFNgamma $ ightarrow$ activation of macrophages
Th2	Secrete IL4 $ ightarrow$ activation of B cells and class switching of plasma cells
Tc cells	Cytotoxic – e.g. Fas-FasL, perforin + granzyme
B cells	Recognise Ag via surface BCR (IgM / IgD)
	Differentiation into plasma cells – Ig secretion (humoral immunity)
	Effector or memory cells
NK cells	Innate immunity
	Kills infected cells without prior antigen exposure

Type 1 HS

- Rapid immunological reaction, interplay of IgE, antigen, and mast cells
- In a previously sensitized individual
- Examples: anaphylaxis, atopic asthma
- Exposure to antigen
- Uptake of antigen by dendritic cells (APCs)
- Presentation of processed antigen on MHC2 by dendritic cells
- Activation of Th2 cells by combination with TCR-CD3 complex
- Secretion of IL-4 by Th2 cells → activation and class switching of B cells into IgE producing plasma cells.
- IgE binds to mast cells (Fc receptors)
- Repeat exposure to allergen antigen \rightarrow crosslinking of IgE \rightarrow mast cell degranulation
 - \circ $\;$ Primary and secondary mediators vasoactive amines + lipid mediators
- End result:
 - \circ Vasodilation

- Increased vascular permeability
- o Smooth muscle spasm
- Inflammatory cell infiltration

Primary mediators	Bioactive amines: Histamine
(immediate)	Enzyme (tryptase, chymase, acid hydrolase)
	Proteoglycans: Heparin
	Eosinophil chemotactic factor
	Neutrophil chemotactic factor
	Adenosine
Secondary mediators	PAF
(late phase)	PGD2
	Leukotrienes
	Cytokines

Phase 1 reaction:

- Vasodilation
- Vascular leakage
- Smooth muscle spasm
- Glandular secretion
- Starts 5-30 mins, subsides within 1 hr
- Mediators:
 - Biogenic amines
 - o Enzymes
 - Proteoglycans

Late phase reaction:

- Ongoing inflammatory reaction without additional exposure to triggering antigen
- Infiltration of tissues with inflammatory cells: eosinophils, neutrophils, basophils, monocytes, T cells.
- Mucosal cell epithelial damage
- Time course 2-24 hrs later

Clinical presentation of anaphylaxis

- Skin
- Resp
- GIT
- Cardiovascular

Type 2 HS

- Immunological hypersensitivity characterized by antibodies directed at self antigens
- Antigens can be:
 - Endogenous: present on cell surface or ECM
 - Exogenous: e.g. drug metabolite
- Consequence of Ab binding to Ag:

Opsonisation + phagocytosis	IgG Abs opsonize cells
	Activates complement $\rightarrow C3b$
	Fc / complement recognized by phagocytes
	Phagocytosis of opsonized cell
	Transfusion reaction / HLDNB
	Autoimmune haemolytic anaemia
Complement + Fc mediated	Ab binds to fixed tissue Ag
inflammation	Activates compliment → C5a + C3a
	爺Vascular permeability, mast cell degranulation,
	inflammatory cell infiltrate
	PMNs activated by C3a + Fc \rightarrow release inflammatory
	mediators (PGs. lvosomal enzymes. ROS)
	RF
	Goodpastures. GN
Ab-dependent cellular	IgG coats cells, cell then destroyed by monocytes,
cytotoxicity (ADCC)	neutrophils, NK cells – without phagocytosis
Ab-mediated cellular	Abs directed against cell surface receptors
dysfunction	Cause cellular dysfunction without causing cell injury or dysfunction
	Graves, MG, pernicious anaemia

OCCD: Opsonisation → phagocytosis Complement → inflammation Cytotoxicity Dysfunction

Type 3 HS

Hypersensitivity mediated by immune complex formation, with or without complement activation.

- 3 phases:
 - 1. Ab-Ag (immune complex) formation in circulation
 - IgG / IgM antibodies
 - 2. **Deposition** of IC in tissues
 - 3. IC-mediated **inflammation** at site of deposition \rightarrow tissue damage
 - @ approx 10 days
 - Fc of Ab binds to leukocyte receptors
 - IC \rightarrow activation of classical pathway of complement cascade

C3b – opsonisation
C5a, C3a – anaphylatoxins
C5b-C9 - MAC
Lysosomal enzymes
ROS / RNS
PGs
PAF
Histamine
Coagulation cascade
Kinogens

- Deposition + consumption of complement (\Downarrow C3 levels)
- Common sites of IC deposition (think of manifestations of autoimmune disease)
 - Renal glomeruli
 - o Joints
 - o Skin
 - o Small blood vessels
 - o Serosa
 - o Heart

Examples of T3HS

- Serum sickness
- SLE
- Arthus reaction
- Post-strep GN

Examples of antigens:

· · · · · · · · · · · · · · · · · · ·	
Exogenous	Foreign protein (serum sickness)
	Bacterial (post-strep GN)
	Viurses (PAN)
Endogenous	DNA (SLE)

Clinical presentation

- Arthritis
- Skin lesions
- Vasculitis
- Nephritis / proteinuria
- Fever

Type 4 hypersensitivity

- Antigen sensitizes
 - CD4 +ve T cells
 - CD8 +ve T cells
 - Results in cellular injury:
 - Cytokine mediated
 - CD4 Th1
 - TH17 cells
 - \rightarrow release of inflammatory mediators (IL2, IFy, TNF α)
 - → inflammatory cell infiltration (macrogphage, mono, neut)
 - Direct cell-mediated
 - CD8 cytotoxic T cells
 - Fas-FasL, granzyme-perforin
- Tissue changes:
 - Perivascular cell infiltrate
 - **Microvascular permeability**
 - Tissue **oedema**
 - Fibrin deposition
 - o Granuloma formation
 - o Cellular necrosis
- Examples:
 - o DMT1
 - o MS
 - \circ RA
 - 0 **TB**
 - o Contact sensitivity dermatitis
 - o Inflammatory bowel disease

Tuberculin skin reaction

- Mediated by differentiated effector T cells
 - Th1: IL2, IFgamma, TNF $\alpha \rightarrow$ macrophage activation
 - Th17: IL17 \rightarrow recruit neutrophils + monocytes
- Starts 8-12hrs
- Peaks 24-72hrs
- Tissue changes:
 - Perivascular cell infiltrate (perivascular cuffing)
 - ①Vascular permeability
 - Tissue oedema
 - Granuloma formation with epithelioid cells
 - Fibrin deposition

Cellular necrosis

How does it differ in a naïve individual?

In naïve individual, CD4+T cells differentiate into T_H lcells after recognising antigen presented on APCs in association with class II MHC molecules. T_H cells can enter the circulation and remain in the memory pool of T cells for long periods (years)

NEOPLASM

Define neoplasm:

- Abnormal growth of tissue
- Growth exceeds that of, and is uncoordinated with, original tissue
- Growth continues in the absence of stimulus which evoked the change

How can malignancy affect host?

- Direct local effects:
 - Mass effect / pressure
 - Haemorrhage
 - o Ulceration
- Systemic:
 - o Cachexia
 - Paraneoplastic

TUMOUR INVASION + METASTASIS

Predecing clonal expansion + growth + angiogenesis

Detatchment	Breaking on intercellular bonds, tumour cells separate from one another
	Downreg of E-cadherin
Attachment	Attachment to ECM via laminin + fibronectin receptors
Degradation	Breakdown of ECM & BM:
	T4 collagenase
	MMP
	Plasminogen activator
Migration	Migration of tumour cell +/- haemoatogenous dissemination
	Tumour cell embolus (aggregate of tumour cells)
	Arrest + extravasation at distant sites
	Growth and angiogenesis

Importance of matrix metalloproteinases

- Collagenases produced by tumour cells or surrounding stromal cells
- Cleave collagen IV of BMs (epithelial / endothelial)
- Breakdown products are generated which facilitate:
 - Angiogenesis
 - Tumor growth
 - Tumor motility

What influences the distribution of metastasis?

Tumour cell adhesion molecules	Ligands for these molecules are preferentially
	expressed on target organ cells
Chemokines	For target tissues
Chemoattractants	From target tissues
Permissive environment?	Some tissues, e.g. skeletal muscle, not permissive
	environment

PARANEOPLASTIC SYNDROMES

- Complex of symptoms
- Cannot be readily explained by local or distant spread of tumor
- Not caused by elaboration of hormones native to the tissue in which the tumor arose

Endocrine	Cushings (ACTH) – small cell lung SIADH – small cell lung, intracranial ÎCa (PTHRP) – squamous lung Carcinoid (5HT, bradykinin) – lung, pancreas, GIT
	Polycythaemia (EPO) – Renal / ovarian
Nerve /	MG
muscle	L-E
Derm	Acanthosis nigricans
	Dermatomyositis
Bone	НРОА
	Clubbing
Haem	Polycythaemia
	Thombophlebitis (Trosseau's – pancreatic Ca)

Cancer cachexia

- Unclear mechanism
- Anorexia
- Cytokines TNFα
- ÎBMR

CANDIDA

Clinical spectrum

Benign commensal	Asymptomatic
Superficial mucosal	Mouth, oesophagus, vagina
Superficial cutaneous	Intertrigo, balantitis, paronychia
Invasive / disseminated	Candidaemia
	Myocardial / endocarditis
	Meningitis
	Abscess – brain / lung / liver / renal
	Endopthalmitis

Virulence features

Phenotypic switching	Rapid adaptation to host environment
Enzymes	Degrade ECM
Adhesion	To host cells, via adhesins
Adeonsine	Blocks neutrophil degranulation

Candida: PEA

CLOSTRIDIA

Gram +ve, anaerobic, spore forming rod

Perfringens	Gas gangrene
Difficile	Diarrhoea + pseudomembranous colitis
Tetani	Spastic paralysis
Botulinum	Flaccid paralysis

Mechanism of action of C. Botulinum

- Oral ingestion
- Cholinergic terminal cytoplasm, A-toxin cleaves synaptobrevin
- Failure of release of ACh vesicles into the NMJ
- Flaccid paralysis

Mechanism of action of C. Perfringens

- Enzymes: collagenase, hyaluronidase
- Toxin (α-toxin): phospholipase C
 - o Lyses RBCs, WBCs, endothelial cells
 - ①Vessel permeability
 - Release of phospholipid derivatives: PGs
 - Dysregulation of cell metabolism + death

CROUP

- Acute laryngotracheobronchitis
- Causes inflammatory narrowing of airway
- Barking cough, insp stridor
- Viral:
 - \circ Parainfluenza
 - o RSV

Characteristics of acute inflammation

- Rapid onset, hours→days
- Vasodilation \rightarrow \uparrow blood flow
- \hat{I} Vascular permeability \rightarrow oedema
- Neutrophil emigration & accumulation

E. COLI

- Gram –ve rod
- Facultive anaerobe

Infections caused by E.coli

- UTI / prostatitis / epididymoorchitis
- Peritonitis
- Cholecystitis

Endotoxin vs. exotoxin

- Endotoxin:
 - LPS from outer cell wall of gram -ve
 - o Cause injury via host cell response
- Exotoxin:
 - $\circ \quad \text{Secreted by bacterium} \quad$
 - o Causes direct cell injury

E. coli enteritis

Enterotoxic	Travellers diarrhea
	Heat labile toxin: like cholera toxin (AC, cAMP, CFTR, Cl)
	Heat stable toxin: (GC, cGMP)
Enterohaemorrhagic	Ground beef
0157	Shigella-like toxin
	Bloody diarrhea + HUS
	MAHA + AKI + TTP
Enteroinvasive	No toxins, invades mucosa
	Colitis
Enteroaggregative	Adheres via fimbriae
	Non-bloody diarrhoea

EBV

dsDNA virus belonging to HHV class of viruses (HHV4)

Pathogenesis of glandular fever

- Saliva transmission
- Enveloped glycoprotein binds to B cells
- Invasion of nasopharyngeal submucosal lymphoid tissue
- Fate of infected B cells:
 - Lysis + virion release
 - Latent infection
- Host immune response:
 - CD8 Tc cells, NK cells
 - Atypical lymphocytes
 - \circ Reactive T cell proliferation \rightarrow lymphadenopathy + splenomegaly
 - IgM \rightarrow IgG to viral capsid Ag
- Can cause B-cell lymphoma

Clinical features of glandular fever:

- Pharyngitis
- Fever
- Tender lymphadenopathy
- Hepatosplenomegaly, prone to rupture
- Rash
- Chronic fatigue

Outcome of glandular fever:

- Most resolve at approx. 1 month
- Some have chronic fatigue
- Liver: jaundice, deranged LFTs
- Splenic rupture
- Malignant transformation (lymphoma)

HERPES SIMPLEX VIRUS

Clinical:

- Cold sore
- Gingivostomatitis / oesophagitis
- Herpetic whitlow
- Genital herpes
- Keratitis
- Encephalitis
- Pneumonia

Mechanism of reactivation:

 Virion travels from mucocutaneous site → sensory nerve nucleus in the dorsal root ganglion

- Latency: mRNA transcription but not translation
- Ractivation: avoidance of immune recognition + antidromic movement along sensory neurone
 - $\circ \quad \text{Inhibition of MHC1}$
 - \circ ~ Fc binding proteins to inactivate Ig
 - o Complement binding proteins to inactivate complement

HERPES ZOSTER

Pathogenesis

- Previous exposure to VZV
- Infects sensory neurons in DRG
- Latency in DRG
- Reactivation in elderly / immunocomprimised
- Antidromic movement along sensory neurone to cause vascular eruption along dermatomal distribution (radiculoneuritis)
- Can cause nerve dysfunction

ΗIV

- Initial invasion of APCs
- Subsequent invasion of CD4+ Th cells:
 - GP120 \leftarrow → CD4
 - CXCR4, CCR5 costimulation
- CD4 depletion
- Immunosupression
- Outcomes:
 - o Opportunistic infections
 - Neoplasms
 - Wasting disease
 - Neurological manifestations

AIDS in USA

- Homosexual males 50%,
- Heterosexual contacts 33%
- IV drug users 25%,
- Recipients of blood transfusions 1%
- Haemophilliacs 0.5%
- Vertical transmission
- Breast milk
- Needlestick (0.3%)

INFLUENZA

Structure of virus

- ssRNA
- Orthomyxoviridae
- Bound by nucleoprotein that determines its A / B / C classification
- Spherical capsule
- Envelope with 2 predominant proteins:
 - Haemagluttinin
 - o Neuraminidase

Subtypes of influenza virus:

- A, B, C determined by nucleoprotein
- H haemagglutinin
- N neuraminidase
- B/C children, don't cause epidemics as no antigenic shift/drift

What causes pandemics / epedemics

- Antigenic drift epedemics
 - Mutation in H/N
 - Antigenic shift pandemics
 - \circ $\;$ Antigenic change due to recombination of viral RNA with animal host RNA $\;$
- Influenza B/C don't show antigenic drift/shift

Host clearance of influenza

• CD8+ Tc cells

•

- Respond to infected host cells expressing viral antigen on MHC1
- Macrophages
 - o IFN induced production of <u>anti-influenza Mx1</u> in macrophages
- Immunity:
 - \circ Ab to H + N

How does influenza cause pneumonia

- Attachment to URT epithelium
- Necrosis of cells → inflammatory response
- Interstitial inflammation with outpouring of fluid into the alveoli
- Secondary infection staph / strep

MALARIA

What causes malaria?

- Protozoa plasmodium
- Intracellular parasite
- 4 main species:
 - o Falciparum
 - o Vivax
 - o Ovale
 - $\circ \quad \text{Malariae}$

Life cycle:

- Sporozoite in saliva of female anopheles mosquito
- Sporozoites enter blood and travel to liver, invade hepatocytes
- Multiply rapidly in liver to form schizonts (and hyponozoits)
- Schizozony (with rupture of hepatocyte) \rightarrow release of merozoites into blood
- Merozoite binds to surface of RBCs and enters RBCs in a vacuole
- Merozoites \rightarrow trophozoites \rightarrow schizont formation in RBCs
- Rupture of RBCs with release of merozoites
- Some merozoites → gametes in bloods
- Taken up by mosquito bite fusion of gametes \rightarrow zygote \rightarrow sporozoites

Clinical presentation of P falciparum:

- Fever
- Anaemia
- Cerebral malaria
- Pul oedema
- DIC
- AKI
- Congestion of spleen \rightarrow splenomegaly
- Cerebral malaria: clumping of parasitosed RBCs → small vessel obstruction → ischaemia, local hypoxia, inflammation
- AKI: Hb casts
- Cytokine release \rightarrow DIC / fever

Plasmodium falciparum

- Infects RBCs of any age severe parasitaemia
- Clumping of paraistosed RBCs
- **îCytokines**
- >
- o Anaemia
- o AKI
- o Cerebral
- o Pulmonary oedema

What causes resistance to malaria

- Inherited RBCs HbS, HbC
- Repeated stimulus \rightarrow immune response: T cells, Abs

• HLA subgroups

MEASELS

- ssRNA
- Paramyxovirus
- Only one strain of virus so amenable to vaccination
- Spread by respiratory droplets

Pathogenesis

- Respiratory droplet spread
- Multiplies in URT epithelial cells
- Moves to lymphoid tissue where it multiplies in mononuclear cells
- Haematogenous spread
- Preventable by vaccination as only single strain
- Epidemics in unvaccinated

Clinical presentation of measles

- Rash, conjunctivitis, coryza, fever, Koplik's spots
- Viral pneumonia
- Acute measles encephalitis
- SSPE
- Croup
- Immunosuppression

Immune response

- T cell mediated immunity: controls infection
- Hypersensitivity to viral antigens \rightarrow rash
- Future immunity mediated by Ab

Host cell receptors for measles virus

- CD46 present on all nucleated cells, binds haemagluttinin
- SLAM present on immune cells, binds haemagluttinin

NEISSERIA MENINGITIDIS

- Gram negative cocci
- Aerobic
- 13 serotypes
- Grow on chocolate blood agar

Pathogenesis

• Colonises oropharynx – 10% pop are carriers at any one time

- Colonisation can last for months
- Spread by resp droplets
- Most people develop immune response and clear it future immunity to this serotype but 13 serotypes
- New serotypes can cause invasive disease
- Invades resp epithelium \rightarrow haematogenous spread
- Encapsulated evades immune response: prevents oposonisation / complement destruction
- Mortality approx. 10%

Clinical presentation of meningococcus

- Meningitis
- Sensorineural hearing loss
- Seizures
- Sepsis
- Death

Other causes of meningitis

- Viral
 - o Enterovirus
 - Measals
- Fungal
 - Cryptococcus
- Bacterial:
 - Pneumococcus
 - Haemophilus
 - o Listeria
 - o GBS
 - $\circ \quad \text{E. coli}$
 - o TB

STAPH AUREUS

• Aerobic gram +ve cocci

Virulence factors

Capsule	Attachment to host cells (e.g. receptors for fibronectin) Evasion of host immune system
Surface proteins	Attachment to host cells
Secreted enzmes: lipase	Lipase degrades skin lipids allowing abscess formation
Secreted toxins:	
Haemolytic toxin ($lpha$)	Membrane damage
Enterotoxin	Food poisoning
Exfoliative toxin (A+B)	SSS
Superantigen	TSS

Toxic shock syndrome

- RFs:
 - o Tampon use
 - Nasal packs
 - Post-op wound infection
 - $\circ \quad \text{Post-natal infections} \quad$
 - $\circ \quad \text{Staph skin infections} \quad$
- Clinical features:
 - o Rash
 - o Shock
 - o AKI
 - o DIC
 - o Resp failure

Other diseases of staph aureus:

- Impetigo
- Cellulitis
- Folliculitis
- Skin abscess
- Scalded skin syndrome
- Pneumonia
- Osteomyelitis
- Septic arthritis
- IE

Other staphylococci bacteria

- Aureus
- Epidermidis opportunistic, e.g. prosthetic valves
- Saprophiticus UTI

Skin infections

- Staph aureus
- Strep pyogenes
- Clostridium perfringens
- Clostridium tetani
- Pseudomonas

STREPTOCOCCUS

• Gram +ve aerobe, in chains or pairs

- Suppurative infections
- Immune-mediated sequalae

Strep infections

- Skin erysipelas, scarlet fever
- Throat
- Ear
- Pneumonia
- Meningitis
- Endocarditis

Usually cause acute suppurative infections

GAS	β-haemolytic	Suppurative infection
GBS	β -haemolytic	Neonatal sepsis
		Female genital
	lpha-haemolytic	Pneumoniae
		Viridans
	Y-haemolytic	Enterococcus

Post-strep sequalae:

- RF (T2HS)
- GN (T3HS)
- Erythema nodosum
- Neuropsychiatric / tics (PANDAS)

Strep virulence factors

Capsule	Attachement to host cell
	Evade immune system
M protein	Prevents phagocytosis
Enzyme	Compliment C5a peptidase
Toxins	Pyrogenic toxin – rash + fever
	Pneumolysin – lyses target cells (S. pneumonia)
HMW glucans	Aggregation of platelets

VARICELLA ZOSTER VIRUS

- HHV
- dsDNA
- Causes chicken pox + shingles

Pathogenesis

- Aerosol / direct contact spread
- Haematogenous dissemination
- Vesicular skin lesions
 - 2 weeks after aerosol exposure
 - Initially macular \rightarrow vesicular
 - Central location \rightarrow peripheral in waves
 - Vesicles rupture, crust, heal
 - Skin + mucous membranes
- Virus dormant in DRG, reactivation if immunosuppressed

Tissues involved in primary VZV infection

- Skin
- Mucous membrane
- Neurones

Shingles:

- Reactivation of latent virus in DRG
- Evades immune response
- Antidromic movement along sensory nerves \rightarrow skin lesion
- Complications:
 - o Interstitial pneumonia
 - Visceral / GI lesions
 - o Encephalitis

Complications of VZV

- Pneumonia (interstitial)
- Meningitis / encephalitis / transverse myelitis
- Shingles +/- bacterial superinfeciton
- GI: necrotizing GI lesions

AAA

- Local dilatation of aorta
- Normally inferior to the renal arteries
- Usually contains atheromatous plaque +/- mural thrombi

Risk factors for AAA

• HTN

- Smoking
- Diabetes
- Male
- Age > 60
- Atherosclerosis

Primary

- CT disorder
- Infection e.g. syphilis
- Trauma
- Immunological

Pathogenesis

- Atherosclerotic plaque in the intima \rightarrow compresses the media
- → Cystic medial degeneration → weakness of the wall
- \rightarrow Local inflammation
- → Proteolytic enzymes / MMPs → collagen degradation
- Loss of vascular smooth muscle cells + elastic fibres

Consequences of AAA

- Rupture → haemorrhage (retroperitoneal / intraperitoneal)
- Obstruction of branch vessel
- Mass effect (e.g. on ureter)
- Thrombus + embolus

Risk of rupture

- <4cm minimal
- 4-5cm 1% year
- 5-6cm 11% year
- >6cm 25% year

5cm is the watershed of risk

AORTIC DISSECTION

Pathogenesis

- Intimal tear into the media in a vessel with weakness of the media
- Seperation of the media either proximally or distally creating a false lumen
- I.e. strips along laminar plane between middle and outer thirds of media
- Weakness of the media due to:
 - o HTN
 - $\circ \quad \text{CT disorder} \\$

- Trauma / arterial cannulation
- Cystic degeneration

Classification

- By location
- Stanford (A vs. B)
- Debakey (I, II, III B.A.D)

Consequences

- Rupture into pericardium / pleural / peritoneum
- Loss of vascular branches \rightarrow ischaemia (e.g. spinal cord)
- Tamponade
- AVR
- MI

AORTIC VALVE STENOSIS

Consequences of aortic stenosis

- LVOO $\rightarrow \uparrow Afterload \rightarrow concentric LVH$
- CCF (systolic / diastolic)
- Myocardial ischaemia (angina / MI)
- Syncope
- Endocarditis

Causes of AS

- Senile calcification
- Congenital bicuspid valve (calcification)
- Rheumatic (often more than one valve, may also include AR) post-inflammatory scarring

Calcific AS

- Wear + tear → calcification
- Heaped up calcified masses within cusps
- 80s + 90s in normal valve
- Earlier in congenital bicuspid

RFs:

- Age
- Bicuspid
- RF
- Atherosclerotic RFs

Complications of congenital bicuspid valve

- Calcification
- Stenosis
- Regurg
- IE

ATHEROSCLEROSIS

Local factors:

- Endothelial dysfunction
 - Haemodynamic disturbance (e.g. turbulence)
 - o Hypercholesterolaemia
- Inflammation
 - HTN
 - o Hyperlipidaemia
 - o Cigarette toxins
 - Pro-inflammatory cytokines (TNF)

Pathogenesis:

Endothelial injury / dysfunction	
LDL accumulation + oxidation	
Inflammatory cell infiltrate	Monocytes infiltration into intima \rightarrow Macrophage + foam
	cells
Smooth muscle	Movement of SMCs from media $ ightarrow$ intima, proliferation
Lipid	Accumulation of lipid in core of intimal lesion,
	intracellular + extracellular

Sudden events at an atherosclerotic plaque

Thrombosis	Rupture / fissuring of intimal surface
	Or
	Erosion / ulceration to subendothelial BM
	• \rightarrow Exposure of thrombogenic ECM \rightarrow thrombosis
	Can cause occlusion
Intra-plaque	Bleeding into plaque from thin-walled neovascularization
haemorrhage	
Embolism	Atheroembolism of plaque thrombus
Aneurysm	• Pressure/ischaemic atrophy of underlying media + loss of elastic tissue
	Cystic medial degeneration

Major complications:

- Occlusion:
 - o Thrombosis
 - $\circ \quad \mbox{Critical plaque size} \\$
- Embolism
- Aneurysm

Stable vs. unstable plaque

Stable	Thick fibrous cap (dense collagen)
	Minimal inflammation
	Small necrotic core
Unstable	Thin fibrous cap
	Înflammation
	Large necrotic lipid core

Vessels most affected

- Abdominal aorta
- Coronaries
- Popliteal
- ICA + COW

Draw an atherosclerotic plaque

The lesion here has a thick fibrous cap, but if it were thin the plaque would be at high risk of rupture

Fibrous cap	Collagen
	SMCs
	Calcification
Cellular layer	Inflammatory cells – Macros, foam, T cells
	SMCs
	Fibroblasts
	ECM
Necrotic / lipid core	Free cholesterol
	Foam cells

CARDIOMYOPATHY

Definition

- Heterogeneous
- Primary pathology of the myocardium
- A/w mechanical or electrical dysfunction
- Usually a/w inappropriate LV hypertrophy or dilatation
- Congenital or acquired
- Can get a similar picture from myocardial involvement in a systemic disorder (e.g. LVH secondary to HTN) *secondary cardiomyopathy*

Types of cardiomyopathy

Hypertrophic (+/- outflow obstruction)	Genetic
Dilated	Genetic
	ЕТОН
	Pregnancy
	Vitamin deficiency
	Drugs
	Myocarditis
	Infection (e.g. chagas)
	Autoimmune
Restrictive	Infiltrative (e.g. amyloid, sarcoid)
	Scleroderma
ARVD	

Consequences of CM

- Valve dysfunction (regurg, IE)
- Mural thrombus
- Arrhytmia
- CCF
- SCD

Dilated vs. hypertrophic

Dilated	Hypertrophic
Systolic dysfunction (↓EF)	Diastolic dysfunction, normal/ ☐ EF
Enlarged chambers	Impaired compliance

Features of HCM

- Myocardial hypertrophy without dilatation
- Asymmetrical septal wall thickening
- Diastolic dysfunction
- May be a/w LVOO
- Microscopic:
 - Myocyte hypertrophy
 - Helter-skelter myocyte disarray
 - o Interstital fibrosis

COR PULMONALE

- RHF
- Not secondary to L sided HF
- Secondary to pulmonary HTN
- Acute or chronic

Causes of cor pulmonale

Pulmonary HTN secondary to...

Parenchymal disease	COPD / bronchiectasis / fibrosis
Vessel disease	Primary pul HTN, PE, vasculitis
Chronic hypoxia	Altitude, OSA
Chest wall restriction	Obesity / kyphoscoliosis / neuromusc

Features of cor pulmonale

- RVH / dilatation
- Congestion of systemic / portal system (not pulmonary)
- Peripheral oedema
- Congestive hepatomegaly, centrilobar necrosis
- Ascites

INFECTIVE ENDOCARDITIS

What predisposes to IE

Cardiac	Damaged valves
	• MVP
	Bicuspid AV
	Rheumatic HD
	Prosthetic valves
Extra-cardiac	Bacteraemia
	Candidaemia
	IVDU
	Immunodeficiency
	Indwelling vascular catheters
	Malignancy

Organisms

- Strep viridans
- Staph aureus
- Staph epidermidis
- HACEK (haemophilus, actinobacillus, cardiobacterium, eikenella, kingella)
- Fungal

Complications of IE

- Cardiac:
 - o Abscess
 - o Valvular failure
 - o CCF
 - \circ Aortic root abscess \rightarrow heart block
 - o SCD
- Systemic:
 - Systemic sepsis
 - Septic emboli Oslers nodes
 - Mycotic aneurysms
 - Immunological sequalae GN, JW lesions

HEART FAILURE

Definition

• Cardiac function is impaired or unable to maintain sufficient CO to meet the metabolic demands of the tissues, at normal filling pressures.

Classification

- Systolic vs. diastolic
- LHF vs. RHF

- High-output vs. low-output
- Acute vs. chronic

Systolic	Dilated CM
	Ischaemic
	Myocarditis
	Valvulopathy
	Arrhythmia
Diastolic	Hypertrophic CM
	Restrictive CM
	Tamponade

Main ones they want:

- HTN
- IHD
- Valvular HD

Clinical features:

- Heart:
 - \circ 3rd HS, gallop
 - o Tachycardia
 - Displaced apex, heave
 - o JVP
- Lungs:
 - o Pulmonary oedema
 - $(RR, \Downarrow SO2)$
 - OPN, PND
- Renal:
 - o RAA
 - o AKI
- Brain:
 - Hypoxia → confusion
- Hepatic:
 - Congestive hepatomegaly, cirrhosis
 - Ascites

Cardiac pathological changes in HF:

- Ischaemia / infarction
- Hypertrophy
- Calcification
- Interstitial fibrosis

Liver pathological changes in HF:

- Nutmeg liver
- Centrilobular necrosis
- Centrilobular fibrosis
- Cardiac cirrhosis

HYPERTENSION

Classification

- Primary (essential)
- Secondary

Secondary hypertension

Renal	Renovascular – RAS, vasculitis GN / PKD
CVS	Coarctation
	PAN
Endocrine	Adrenocortical function (Cushing's, Conn's, CAH)
	ÎCatecholamines (phaeo)
	Acromegally
	①Thyroid
	Exogenous hormones / sympathomimetics
CNS	ĤICP

Primary HTN

Genetics	Multi-gene interaction
	Monogenic – affecting Na resorption
Vasoconstrictive	Vasoconstriction / structural change to vessel walls $ ightarrow$ \Uparrow TPR
Environmental	Stress / obesity / smoking / lack of exercise / salt in diet

Consequences of HTN

- Atherosclerosis
 - o MI
 - o PVD
- CVA
- Dissection
- Aneurysm
- CKD
- CCF
- Multi-infarct dementia
- Retinopathy

Malignant HTN

- SBP > 200, DBP > 120
- End organ damage:
 - o Retinal
 - \circ Renal
 - o Encephalopathy
 - $\circ \quad \mathsf{CCF}$
- Usually superimposed on pre-existing HTN
- Occurs in <5% HTN patients

• High mortality untreated

Hypertensive heart disease

Criteria

- Systemic HTN
- LVH
- Absence of another cause

Macroscopic features of HTN heart disease

- LV wall thickening $\rightarrow \uparrow$ weight of heart
- No LV dilatation
- LA enlargement

Consequences

- Diastolic dysfunction
- HF
- SCD
- AF/Aflut

ACUTE CORONARY SYNDROME

Pathophys of ACS secondary to atherosclerosis

Acute plaque change	Rupture / fissure
	Erosion / ulceration
	Haemorrhage into atheroma
Thrombosis	Exposure of thrombogenic subendothelial ECM $ ightarrow$ activation of
	coagulation
	Platelet adhesion + aggregration
	Platelet release of mediators causing vasospasm
Vasoconstriction	Local: from platelets
	Local: perivascular inflammatory cell release (endothelin,
	serotonin, NPY)
	Local endothelial dysfunction: \Downarrow NO
	Systemic: adrenergic agonists
Cumilates in vessel occlu	sion:
\Downarrow Myocardial perfusion	
ightarrow Ischaemic necrosis	

- 1. Acute plaque change
- 2. Thrombosis (1° + 2° haemostasis)
- 3. Vasoconstriction
 - → ISCHAEMIC NECROSIS

Complications of AMI

- Contractile dysfunction: cardiogenic shock
- Arrhythmias
- Myocardial rupture (free wall / septum)
- Ventricular aneurysm
- Pericarditis (Dressler's)
- Pericardial effusion / tamponade
- Mural thrombus
- Papillary muscle rupture → acute regurgitation

Consequences of cardiac rupture

- Free wall → tamponade (commonest, occurs days 1-10)
- Septal → VSD (L->R shunt)
- Papillary \rightarrow MR

Ventricular modeling post-MI

- Hypertrophy + dilatation
- $\rightarrow \uparrow 02$ demand \rightarrow ischaemic & \downarrow cardiac function
- Fibrosis \rightarrow scarring \rightarrow stiffening

Systemic factors affecting infarct healing

- Nutritional: protein, vit C
- Metabolic: diabetes
- **Circulatory**: sufficiency of reperfusion
- Hormonal: glucocorticoids

Time-course of changes

- Reversible + irreversible changes
- Anaerobic metabolism begins immediately
- Cell death after 30mins
- Extensive necrosis after 2 hrs

1) Loss of contractility occurs in <2min

- Onset of adenosine triphosphate (ATP) depletion occurs in seconds ATP reduced to 50% of normal in 10min ATP 10% of normal in 40min
- 3) Irreversible cell injury occurs in 20-40min
- Microvascular injury occurs >1hr
- 5) Gross features of a myocardial infarction are present at 4-12hrs.
- 6) <24hrs early coagulative necrosis</p>
- 7) 3-7 days: disintegration of myofibres
- 8) 2-8 days: collagen deposition and fibrotic scarring
Consequences of reperfusion

- Early: nil
- Late:
 - Haemorrhage
 - o Accelleration of disintegration of damaged myocytes
 - New injury due to O2 free radicals

PERICARDITIS

Clinical features:

- Chest pain (positional, pleuritic)
- Fever
- Pericardial rub
- Muffled heart sounds
- Congestive failure

Pericarditis:

- Infectious:
 - Viral
 - \circ Bacterial
 - o TB
 - o Fungal
- Immune mediated:
 - o RF
 - o SLE
 - o Scleroderma
 - o RA
- Metabolic:
 - o Uraemia
- Post-MI Dressler's
- Trauma
- Drug induced
- Radiation induced

Types of pericardial effusion

Serous	Usually non-infectious, inflammatory
Fibrinous /	Commonest
serofibrinous	Post-MI, trauma, infectious, inflammatory
Purulent	Bacterial infection
Haemorrhagic	Malignant
Caseous	ТВ

ARDS

Pathogenesis

- 1. Acute inflammatory response (neutrophils)
- 2. Injury to alveolar capillary endothelium
- 3. **()**Vascular permeability
- 4. Alveolar flooding + fibrin deposition
- 5. Formation hyaline membranes
- 6. Damage to T2 pneumocytes \rightarrow widespread surfactant abnormalities
- 7. Organisation + scarring

Conditions causing ARDS

- Infection (sepsis, gastric aspiration)
- Trauma / burns
- Inhaled irritants (smoke, O2 toxicity)
- Chemic injury (heroin, salicylate poisoning)
- Haematological (DIC)
- Pancreatitis
- Uraemia

Outcome of ARDS

- Death
- Survival with organization + scarring

ASTHMA

- Disease of conducting airways
- Due to airway hypersensitivity
- Episodic bronchoconstriction
- Inflammation of bronchial walls with excess mucous secretion

Types of asthma

Atopic	Most common T1HS Th2 mediated IgE production in response to allergen, re-exposure → crosslinking of IgE and mast cell degranulation Immediate (bronchoconstriction), late phase (inflammation) Th2 – II 4, II 5
Non-atopic	Hyperirritability of bronchial tree No allergen sensitivity ? Viral induced Skin test negative

Drug induced	Aspirin B-blocker
Occupational	

Triggers

Atopic	Environmental (dust, pollen, animal dander, food) +ve family Hx
Non-atopic	Viral (rhinovirus, RSV) Exercise Cold Air polluntants

Early phase of acute atopic asthma

- Th2 mediated IgE production in response to allergen, re-exposure → crosslinking of IgE and mast cell degranulation →
 - \circ Vasodilation
 - $(Vascular permeability \rightarrow oedema$
 - \circ Bronchoconstriction
 - Mucous production
- Opening of gap junctions between epithelial cells →
 - $\circ \quad \text{Antigen can enter mucosa}$
 - Further acute inflammatory response
- Some direct action via vagal reflexes

Late phase:

- Recruitment of leukocytes
 - o Neutrophils
 - Eosinophils (major basic protein)
 - Basophils
 - Lymphocytes
 - Monocytes
- Inflammatory mediator release
- Epithelial damage

Inflammatory mediators

- Histamin
- Bradykinin
- Leukotrienes
- PGs
- PAF
- ACh
- Cytokines: IL, TNF

Cells involved

- Mast cells
- Eosinophils
- Basophils
- Lymphocytes
- Macrophages
- Neutrophils

BRONCHIECTASIS

- Permanent DILATION of bronchi + bronchioles
- Due to destruction of muscle + elastic tissue, with scarring
- Resulting from, or associated with, chronic necrotizing infections

Causes:

- Idiopathic
- Infection
- Obstruction
- ABPA
- Congenital:
 - o CF
 - o PCD / Kartageners
 - Young's

FAT EMBOLISM SYNDROME

Causes:

- Microscopic fat globules travelling in the circulation
- Long bone fracture
- Occurs in 90% of skeletal injury, but only 10% symptomatic

Pathophys:

Mechanical obstruction	Mechanical obstruction of microvasculature in:
	 Lungs
	o Brain
	 Due to:
	 Fat globules
	 Aggregated platelets + RBCs
Biochemical injury	 FFA → endothelial injury + platelet activation

Consequences:

- Resp: respiratory distress, hypoxia
- Neuro: confusion, seizures

- Haem: TCP, anaemia
- Asymptomatic
- Death

PULMONARY EMBOLISM (PE)

Pathogenesis

- DVT (95% in lower limb)
- Through to RV \rightarrow pulmonary arterial tree
- Main pulmonary arteries or any downstream vessels

Clinical

- Asymptomatic
 - Symptoms:
 - 0 **CP**
 - o Resp distress
 - o Syncope
 - o Arrest
 - o Haemoptysis
- Signs:
 - o **îhr**
 - o îrr
 - o **↓**SO2
 - ∘ ↓BP
 - Acute RHF
 - Pulmonary HTN

RFs for PE:

See DVT RFs

Determinants of severity

- Extent of pulmonary artery flow obstruction
- Size of vessel occluded
- Number of emboli
- Overall CVS + resp status (baseline)

EMPHYSEMA

- Chronic lung condition
- Irreversible enlargement of airways distal to terminal bronchiole
- Due to destruction of alveolar walls
- Without fibrosis

Pathogenesis

Fundamental: imbalance between destructive protease and protective anti-protease activity.

Inflammation	 Exposure to toxic substances such as cigarette smoke → inflammation
	 Neutrophil / macro / lymphocyte infiltration → 1[cytokines, oxidants, elastase
	■ → Epithelial cell death + ECM proteolysis
	 Elastin degradation products mediate further inflammation
Protease vs.	 Smoking flelastase activity in neutrophils + macrophages
Antiprotease	■ Free radicals ↓antiprotease activity, ↑neutrophil elastase
	 1% of patients have low antiprotease activity due to α-1-
	antitrypsin deficiency (PiZZ variant)
Oxidant vs. anti- oxidant	 Cigarette smoke → îîîROS, depletes antioxidant activity

Clinical presentation COPD

Emphysema = pink puffer	Chronic bronchitis = blue bloater
Barrel chest	Recurrent chest infections with purulent
Dyspnoeic	sputum
Prolonged expiration	Less dyspnea, ↓resp drive
Hyperventilation to maintain normal gas	Hypoxic + cyanotic
exchange	Cor pulmonale

Complications of emphysema

- Obstructive lung disease
- Hypoxia
- Resp failure
- Pul HTN \rightarrow cor pulmonale
- Pneumothorax
- Infection

Anatomical types of emphysema

Centriacinar	Smoking
	Central/proximal part of respiratory unit
	Distal alveoli spared

	UL > LL
Panacinar	α 1-AT defic
	Uniform destruction of acinus
	LL>UL
Paraseptal	
Irregular	

LUNG CANCER

Risk factors

Environmental	Tobacco smoke
	Asbestos
	Air pollution
	Occupational (arsenic)
Genetic	Dominant oncogenes: c-MYC, k-RAS
	Loss of tumour suppressor: P53, RB
Precursors	Squamous dysplasia
	Atypical adenomatous hyperplasia

Histological classification

- Adenocarcinoma commonest
- Squamous cell
- Small cell
- Large cell
- Carcinoid

Routes of metastasis

- Lymphatic
- Haematological
- Direct seeding
- Local invasion

Clinical

- Cough
- Haemoptysis
- Weight loss
- Dyspnoea
- Chest pain

Paraneoplastic:

- Small cell: ACTH, SIADH
- Squamous: PTHRP
- Carcinoid: 5HT / bradykinin \rightarrow flushing, diarrhea, bronchospasm
- HPOA
- Lambert-Eaton syndrome

Effects of local spread

- Collapse, consolidation, bronchiectasis
- SVC obstruction
- Osophageal obstruction → dysphagia
- Pleural effusion
- Pericardial effusion
- Invasion of RLN → hoarseness
- Invasion of phrenic N → diaphragmatic paralysis
- Horner's

MALIGNANT MESOTHELIOMA

- Up to 10% lifetime risk
- Asbestos bodies found in the lungs
- Long latent period
- Smoking does not [↑] risk of mesothelioma, but asbestos [↑] risk of lung cancer in smokers

Sites of malignant mesothelioma

- Pleura
- Peritoneum
- Pericardium
- Genital tract
- Tunica vaginalis

PNEUMONIA

- Bacterial causes:
 - o Strep penumoniae
 - o Haemophilis influenzae
 - Morexella catarrhalis
 - o Chlamydia
 - o Legionella
 - o Mycoplasma
 - o Klebsiella
 - Staph Aureus
- RFs:
 - o Extremes of age
 - o Underlying lung disease, e.g. COPD
 - Underlying systemic disease: DM, CCF
 - Immunodeficiency
 - o Asplenia
 - o Recent / concurrent viral infection

Aspiration pneumonia

- Aspiration of gastric contents
- In patient unable to protect their airway
 - ↓LOC
 - Stroke / abnormal gag reflex
 - Persistent vomiting
- Chemical +/- bacterial pneumonitis
- GI bacteria, can be multiple, predominantly aerobic, e.g. E.coli
- Necrotising, abscess formation
- Contrast aspiration pneumonia to CAP
- CAP:
 - \circ $\,$ Viral / bacterial $\,$
 - o Name bacteria
 - \circ $\;$ Variable response depending on host and infectious agent
 - Abs improve clinical course
 - o Lower mortality
 - \circ $\,$ Complications:
 - Abscess
 - Empyema
 - Pericarditis, myocarditis, endocarditis
 - Meningitis
 - Septic emboli

Atypical pneumonia

- Interstitial rather than alveolar infiltration
- No consolidation
- Patchy inflammatory changes
- Moderate elevation WCC
- Different clinical symptoms
 - \forall Cough / sputum
- Different organisms
- Lower mortality

Organisms:

- Virus (e.g. influenza, parainfluenza, RSV)
- Bacterial: mycoplasma, chalmydia, legionella, coxiella

Legionella

- Artificial aquatic environment
- Inhalation of aerosolized droplets
- Or aspiration of contaminated water

Dx Legionella

- Urinary antigen
- Sputum fluorescent Ab test
- Culture
- PCR

ΤВ

Natural Hx of TB

Primary TB	Primary complex of localized caeseous necrosis + mediastinal LNs May heal (organisms not viable) or result in latent infection
Latent period	
OR Primary	Rapid spread of TB including haemotogenously $ ightarrow$ miliary TB
progressive	
Secondary TB	Reactivation of latent MTB, or reinfection
	Destructive caeseating lesions which may remain localized to the lungs or
	may be progressive and systemic (miliary TB)

Pathogenesis

- Aerborne droplet spread
- MTB enters alveoli macs and replicates
- Blocks phagosome-lysosome fusion so intracellular MTB not killed
- T4HS (T-cell mediated, delayed hypersensitivity) death of macrophage and granuloma formation. Th1 cells, via MHC expressed antigen, release IFN + TNF which activate macs.
- Granuloma formed by recruitment of monocytes which become epithelioid histiocytes.
- Granuloma contains the MTB in anaerobic conditions
- Reinfection / reactivation \rightarrow heightened immune reaction \rightarrow tissue destruction

Virulence factors of MTB

- Escape macrophages
- Avoid death inside macrophages by inhibiting phagosome-lysosome fusion
- Induce T4HS at approx. 3 weeks → epithelioid cell granulomas
- Cord factor, LAM, complement activation

Secondary TB

- May directly follow primary infection, or follow a period of latency
- Caused by:
 - \circ Reactivation
 - Or
 - Reinfection
- Pulmonary features of secondary TB
 - **Apex** of upper lobe
 - Inflammation + granuloma + multinucleate giant cells
 - \circ Caesous necrosis
 - \circ Cavitation
 - Healing with **fibrosis + calcification**
 - \circ Complications:

- Haemorrhage due to erosion of BVs
- Miliary spread
- Pleural effusion
- Empyema
- Meningitis

Diagnosis of TB

- Clinical features
- Apical lung lesion on **CXR**
- Tuberculin skin test
- Microbiological:
 - Acid-fast smears + cultures
 - o PCR

ANAEMIA

Classification

Blood loss	Acute vs. chronic
ÎRBC	Inherited:
destruction	Membrane: HS
	Enzyme/metabolism: G6PD
	Hb: sickle, thalassaemia
	Acquired:
	Immune: autoimmune, alloimmune
	Drug: dapsone
	Infection: malaria
	MAHA: DIC, valve, TTP
	Toxic: envenomation
↓ RBC production	Inherited
	Fanconi's aplastic anaemia
	Acquired
	 Infiltrative – leukaemia, myelofibrosis
	Nutritional – B12 / folate
	EPO deficit – renal disease
	Drug induced aplasic anaemia

Fe Defic Anaemia

- Causes: **Uintake**, **Uabsorption**, **frequirement**, **fblood loss**
 - Chronic blood loss menstrual / GI / hookworm
 - Poor PO intake dietary
 - Poor absorption coeliac, gastrectomy
 - Increased requirement pregnancy, puberty
- Fe stores are depleted:
 - \circ Ferritin

- o Haemosiderin
- Then serum iron + transferrin decreases
- Erythroid activity increases, RBCs become hypochromic + microcytic

Symptoms of Fe Defic anaemia

- Symptoms of anaemia
- Symptoms of blood loss
- Specific clinical signs:
 - o Koilonychia
 - o Alopecia
 - \circ Glossitis
 - Oesophageal webs
 - o Pica

Fe defic anaemia bloods

- Microcytic hypochromic anaemia
- ↓Fe
- ↓Ferritin
- UTransferrin sat
- **↑TIBC**

Ethnic anaemias

HS	Northern Europe
Sickle	African
Thal	Mediterranean
Pernicious	Caucasian

Haemolytic anaemia classification

- Intravascular vs. extravascular
- Hereditary vs. acquired

Features of haemolytic anaemia

- \Downarrow RBC life span due to premature destruction (<120 days)
- $(1 \in PO + erythropoiesis \rightarrow reticulocytosis)$
- Accumilation of products of Hb breakdown (bilirubin)

INTRAvascular haemolysis

Mechanical injury	МАНА
	- Valves, TTP, DIC
Ig + complement fixation	ABO mismatched blood transfusion
Infectious	Malaria (intracellular parasitosis)
Toxins	Clostridia

Consequence of intravascular haemolysis

- Anaemia
- Haemoglobinaemia
- Haemoglobinuria
- Unconjugated hyperbilirubinaemia from catab of haem in phagocytes
- Haemosiderinuria + renal haemosiderosis
- ↓Haptoglobin
- Reticulocytosis

PERNICIOUS ANAEMIA

Pathogenesis of PA

- Immune-mediated destruction of gastric mucosa
- → Chronic atrophic gastritis
- T-cell + autoantibody mediated
- \Downarrow Parietal cells $\rightarrow \Downarrow$ IF $\rightarrow \Downarrow$ B12 absorption in terminal ileum
- 3 types of Ab:
 - T1 blocks B12 binding to IF
 - o T2 blocks B12-IF complex binding to ileal receptors
 - o T3 proton pump Ab

Clinical

- Slow as large stores of B12 in body
- Megaloblastic anaemia → symptoms of anaemia
- Leukopaenia, thrombocytopaenia
- Neurological: SCD, spastic paraparesis, optic atrophy
- Atrophic glossitis

HAEMOPHILIA A

- ↓Factor 8
- Cofactor for F9 in activation of F10
- X-linked recessive
- Males + homozygous females
- 30% de novo mutation without FHx

Causes of bleeding

- Factor 8 part of intrinsic pathway
- Co-factor for F9 in activation of F10
- Causes inappropriate coagulation, and also inappropriate fibrinolysis
 - Failure to produce thrombin $\rightarrow \Downarrow TAFI$ (thombin activatable fibrinolysis inhibitor) $\rightarrow \Uparrow$ fibrinolysis.

<1%	Severe
2-5%	Moderate

6-50% Mild

SICKLE CELL ANAEMIA

- Hereditary haemoglobinopathy
- Autosomal recessive
- Glumatic acid \rightarrow valine on Ch 11
- \Downarrow Solubility of Hb \rightarrow sickling when doxygenated

Pathological presentation:

- Haemolytic anaemia
- **Microvascular occlusion** → ischaemia
 - o Painful crises
 - $\circ \quad \text{Tissue infarction} \quad$
- Splenomegally + splenic infarct → autosplenectomy
- ⁽¹⁾Susceptibility to infection by **encapsulated bacteria**
- Heterozygous asymptomatic unless severe hypoxia
- Homozygous most Hb is HbS, leads to alteration of Hb when deoxygenated → sickling and membrane changes

Sickling triggers:

- Hypoxia
- Acidosis
- Dehydration

THROMBOCYTOPAENIA

↓Platelet production	Congenital
	Aplastic anaemia
	Infiltrative BM disorders
	Ineffective: megaloblastic
	Drugs (ETOH)
	Viral (measles, HIV)
	Consumptive – DIC, TTP
	Immune – ITP
	Infective – HIV, CMV
	Sequestration - splenomegally
	Drugs - heparin
	Dilutional - massive blood transfusion

Immune thrombocytopaenia

- Primary: acute vs. chronic
- Secondary (e.g. heparin)

Chronic ITP – adult females

- Formation of Abs against platelet membrane glycoproteins (2b-3a, or 1b-9)
- Opsonised platelets removed by phagocytes (mononuclear)

- Spleen major site of removal
- 80% improve after splenectomy (both site of destruction + site of auto-Ab synthesis)

Acute ATP – children

- Follows viral illness
- Abrupt onset
- Antiplatelet Abs
- Usually self-limiting with resolution in 6 months

VON WILLEBRAND DISEASE

Inherited bleeding disorder Compound defect in platelet function + coagulation pathway (vWF + F8 complex)

Haem effects

- **î**Bleeding time
- \uparrow APTT (\Downarrow F8 due to normal complex with vWF)
- URiscocetin cofactor activity

Clinical features

- Spontaneous bleeding from mucous membranes
- Wound bleeding
- Menorrhagia
- Bleeding into joints rare, severe types only

Types

T1	<pre>↓ circulating vWF T1 – AD, common, mild</pre>
Т3	↓ circulating vWF T3 – AR, severe
Т2	Defective vWF AD, mild

Why does it affect APTT

• vWF + F8 complex extends HL of F8 from 2.5 \rightarrow 12hrs

BOWEL OBSTRUCTION

Causes of bowel obstruction:

- SBO:
 - o Adhesions
 - \circ Hernia
 - \circ Intersussception
 - \circ Strictures
- LBO:
 - o Volvulus
 - o CRC

Consequences of bowel obstruction

- Perforation
- Peritonitis
- Sepsis
- Bowel ischaemia
- Electrolyte disturbance
- Death

How does hernia cause bowel obstruction

- Hernia is a projection of a viscera through the walls of its containing cavity into an anatomically abnormal location
- Weakness / defect in abdominal wall
- Protrusion of serosa-lined pouch of peritoneum through defect (hernia sac)
- Visceral protrusion through sac
- Entrapment of hernia sac in narrow neck
- Venous stasis \rightarrow oedema \rightarrow incarceration + stangulation

CHOLERA

- Vibrio cholera
- Gram –ve
- Comma-shaped / flagellate

Pathogenesis of cholera

- Non-invasive
- Flagella proteins for attachment + colonization
- Cholera enterotoxin (exotoxin):
 - o 5 x B subunits
 - o 1 x A subunits

B subunit	Binds to intestinal epithelial cells
	Facilitates retrograde endocytosis
A subunit	In cytoplasm, activated Gs protein
	Adenyl cyclase $\rightarrow \hat{1}$ cAMP \rightarrow opens CFTR
	Release of Cl ⁻ into lumen, with secretion of HCO3, Na, H2O

Massive secretory diarrhea which overwhelms colonic absorption **Rice water diarrhoea**

CHRONIC GASTRITIS

Causes of chronic gastritis

- H. pylori
- NSAIDS
- ETOH
- Autoimmune
- Radiation
- Stress

H. pylori induced gastritis

- Most common cause
- Gastric antrum
- Generates ammonia
- Distruption of mucosal defence mechanisms
- ↑Gastric acid, ↓gastrin

Complications of gastric ulcer

- Bleeding
- Perforation
- Obstruction
- Adenocarcinoma

H. PYLORI + PUD

- H. pylori secretes:
 - o Urease generates free ammonia
 - Protease breaks down glycoproteins in gastric mucosa
 - o Phospholipases damages mucosal epithelial cells
 - Bacterial platelet activating factor capillary thrombosis
- \circ $\;$ Damage of epithelium \rightarrow leakage of tissue nutrients to sustain H. pylori
- **()**Gastric acid secretion, Ubicarbonate secretions
- Induce **immune response** T + B cell response

Complications of PUD

- Bleeding
- Perforation
- Obstruction: oedema / scarring, in pylorus, intractable vomitting

CROHNS

- Transmural inflammation of bowel
- Granulomatous (non-caseating)
- Anywhere mouth \rightarrow anus
- Skip lesions
- Ulceration + fissures + fistulae

Complications of Crohns:

- Perforation
- Peritonitis
- Abscess / collection
- Stricture
- Fistula
- Malabsorption
- Neoplasia
- Extra-GI

Extra-intestinal features of Crohns

Joints	Polyarthropathy
	Ank spond
	Clubbing
Skin	EN, pyoderma gangrenosum
Eyes	Uveitis
Biliary	Sclerosing cholangitis
Systemic	Amyloidosis

ULCERATIVE COLITIS

Path features

- One of two pathologies that compose IBD
- Severe, ulcerating, inflammatory disease
- Confined to colon + rectum (backwash ileitis)
- Continuous (no skip lesion)
- Only involves mucosa + submucosa (not transmural)
- Superficial, broad-based ulcers
- Psudopolyps
- Crypt abscesses
- Megacolon
- Dysplasia \rightarrow malignant potential

Extraintestinal manifestations (as for CD)

Features of carcinoma secondary to UC

- Multi-focal
- Infiltrative without exophytic masses

INFECTIVE GASTROENTERITIS

Viral	Norovirus	
	Rotavirus	
	Adenovirus	
Bacterial	Preformed toxin: staph aureus, clostridium perfringens	
	Toxic: cholera, enetrotoxic E.coli	
	Invasive: enteroinvasive E.coli, shigella, salmonella	
Parasites	Giardia, amoebiasis	
	Helminths	
	Cryptosporidium	

Pseudomembranous colitis

- Overgrowth of C.diff
- A/w antibiotic use distruption of normal bowel flora (normally 3rd gen cephalo)
- Toxins:
 - Disruption of epithelial cytoskeleton
 - Tight junction barrier loss
 - Cytokine release
 - \circ Apoptosis
- Denudation of epithelium
- Dense inflammatory infiltration of lamina propria
- Mucopurulent exudate
- Pseudomembrane: adherent layer of inflammatory cells + debris at site of mucosal injury

- RFs:
 - o Age
 - Abx treatment
 - Hospitalisation
 - o Exposure
- Clinical features:
 - o 30% hospitalized patients colonized, most asymptomatic
 - Watery diarrhoea
 - Fever + leukocytosis
 - o Abdominal pain
 - o Dehydration
- Dx: detection of toxin
- Rx: metronidazole + vanc

BOWEL ISCHAEMIA

What can cause bowel infarction?

- Arterial obstruction:
 - \circ Atherosclerosis
 - o Embolus
 - Aortic dissection / aneurysm \rightarrow obstruction branch artery
 - \circ Volvulus / hernia \rightarrow mechanic compression
- \circ Venous occlusion
 - \circ Hypercoaguable state
 - o Neoplasm
 - o Abdominal mass
- Non-occlusive ischaemia:
 - $\circ \quad \text{Shock}$
 - High dose vasopressors
- Vasculitis
 - HSP
 - o Wegeners

Acute transmural infarction

- \circ Congestion
- Oedema + haemorrhage in wall
- Mucosal necrosis
- \circ Gangrene
- o Third spacing of fluid into lumen
- $\circ \quad \text{CVS: shock} \\$
- Metabolic: acidosis, electrolyte disturbance
- Perforation
- o Death

Chronic bowel ischaemia

o Segmental, patchy, mucosal degeneration

 \circ Strictures

Clinical presentation of infarction

- o Severe pain
- Peritonitic abdomen
- Bloody diarrhea
- o Raised lactate
- o Sepsis
- o Shock

Part of bowel must vulnerable to ischaemia

- $\circ \quad \text{Watershed zones} \quad$
 - Splenic flexure
 - o Sigmoid
- o Located at end of arterial supply / transition area
- o At epithelial level, villi more vulnerable than crypts as capillaries run upwards to villi

SALMONELLA

- Gram –ve bacillus
- Flagellated
- Eneterobactericea
- Food + water borne

Typhoid fever pathogenesis

- Caused by:
 - Salmonella typhi (endemic)
 - Salmonella paratyphi (travellers)
- Invades GI M-cells, then phagocytosed by macrophages
- Terminal ileum + colon
- I.e. invasive
- Reactive hyperplasia of GI lymphoid tissue
- Neural reflex pathway
- Haematogenous dissemination

Clinical:

- Fever + rash + bloody diarrhea
- Vomitting
- Anorexia
- Flu-like symptoms

ALCOHOLIC LIVER DISEASE

Path features

Hepatic steatosis	Fatty change
	Perivenular fibrosis
Hepatitis	Hepatocyte necrosis
	Inflammatory
	Mallory bodies
Cirrhosis	Fibrosis
	Hyperplastic nodules
	Nodular disruption of liver architecture
HCC	

• Steatosis + hepatitis are reversible

Acute alcoholic hepatitis

- Hepatocyte swelling + necrosis
- Mallory bodies: eosinophilic cytoplasmic inclusions
- Neutrophilic reaction
- Fibrosis: stimulation of sinusoidal stellate cells \rightarrow fibroblastic change

Cirrhosis

Diffuse, largely irreversible	
Parenchymal nodules of	
regenerating hepatocytes	
Fibrous septa	Dense bands of fibrous tissue
	Laid down by sinusoidal stellate cells (activated by cytokines
	from Kuppfer cells, $ ightarrow$ shift to myofibroblast phenotype)
	Collagen 1 + 3
Global disorganization of	
liver architecture	
P-S shunting	Reorganisation of vascular architecture $ ightarrow$ portosystemic
	shunting

Sequalae of cirrhosis:

- Failure of synthetic function: ↓albumin, ↓clotting factors
- Portal HTN: varicies, ascites, GI bleed
- Hepatorenal syndrome
- Hepatopulmonary syndrome
- Encephalopathy / coma
- Infection

CIRRHOSIS

Causes of cirrhosis

- Alcoholic
- Infectious: HBV, HCV
- Biliary disease: PBC, PSC
- Autoimmune
- Metabolic: Wilson's, HH, α1-AT defic
- Drug induced: α-methyldopa
- CCF \rightarrow congestive cirrhosis

CHOLECYSTITIS

Pathogenesis of acute calculous cholecystitis

- Chemical irritation of obstructed GB
- Protective glycoprotein layer lost
- Obstruction by stone \rightarrow dysmotility \rightarrow stasis
- Damage to membrane by:
 - o Bile salts detergent action
 - o Toxic lysolethicins
 - Activation of hydrolases
 - PGs → inflammation
- ↓ Mucosal blood flow (due to distension + ↑ intraluminal pressure)

Acalculous (10%)

- Rarer, slower/more insidious, may have no GB symptoms
- Ischaemia of end artery
- Stasis, local inflammation, distension
- Predisposing:
 - Major surgery
 - o Sepsis
 - o Shock
 - o Trauma
 - o Immunosupression

Clinical pres:

- RUQ pain
- Fever
- Vomitting
- Anorexia
- Features of sepsis: tachy, sweating

Complications of cholecystitis

- Bacterial infection → cholangitis / sepsis
- Empyema

- Perforation + collection/abscess
- Biliary fistula
- Porcelain gallbladder

GALLSTONES

RFs for cholesterol stones

- Age
- Gender W>M
- OCP / Pregnancy:
 - 1 Hepatic lipoprotein receptors → 1 cholesterol uptake
 - (1) HMG-CoA reductase → (1) Cholesterol synthesis
- Acquired disorders \rightarrow gallbladder stasis
- Genetic disorders: ABC transporters

Pathogenesis of cholesterol stone formation

• Requires simultaneous conditions:

Bile supersaturated with cholesterol	
GB hypomotility	
Cholesterol crystal nucleation	
Hypersecretion of mucus	Traps cholesterol crystals $ ightarrow$ aggregation into stones

HEPATITIS A

- ssRNA
- Picornavirus
- Unenveloped
- Icosahedral capsid
- Faeco-oral spread

Clinical differences to HBV

- Self-limiting
- No carrier state
- No chronic state
- No cirrhosis / HCC
- Small incidence of fulminant hepatitis 0.1% fatality

Natural Hx

- Faecal-oral transmission
- Incubation period 2-6 weeks
- More likely to be asymptomatic in children
- Prodrome (pre-ictal):
 - o N&V
 - o Diarrhoea
 - o Malaise
 - o Fever

• Jaundice (ictal):

- o After 1-2 weeks
- Hepatomegaly (± splenomegaly)
- o Dark urine, pale stools
- Small incidence of fulminant hepatitis 0.1% fatality
- No chronic or carrier state

Serological diagnosis

- Incubation 2-6 weeks
- Acute rise in fecal HAV shedding 2-12 weeks
- Acute: IgM anti-HAV
 - As IgM titre rises, fecal shedding stops
- Chronic: IgG anti-HAV
 - o Begins to appear shortly after IgM
 - Elevates over months, lasts years

They like a graph

HEPATITIS B

dsDNA Enveloped **Hepadnarviridae**

Serology

HBsAg positive – indicates current infection. Anti-HBc total positive – exposure to HBV. IgM anti-HBc negative – exposure not acute or recent. Anti-HBs negative – no current immunity to HBV. Diagnosis: Chronic Hepatitis B.

Acute Hep B serology

- HBsAg
- HBeAg
- HBV DNA
- Anti-HBcAg IgM
- NOT anti-HBsAg

Chronic Hep B serology

- HBsAg > 6months
- Active replication: HBeAg, HBV DNA
- Anti-HBcAg
- NOT anti-HBsAg

Transmission

- Congential vertical transmission
- Parentral blood:
 - o Blood products
 - o IVDU
 - \circ Needlestick
- Sexual
- Unknown

Outcomes:

65% acute is subclinical – complete recovery 25% acute symptomatic (<1% fulminant) 10% healthy carrier 10% will become chronic

- 70% of chronic will recover
- 30% of chronic will cirrhosis
- 3% of chronic will HCC

HEPATITIS C

- ssRNA
- Enveloped
- Flaviviridae

Risk factors

- IVDU
- Multiple sex partners
- Surgery
- Needle stick
- Multiple contact with HCV infected person
- Vertical
- Unknown

Natural Hx:

- Incubation: 2-26 weeks
- Acute infection asymptomatic in 85%
 - Otherwise usually mild acute disease
 - o Rare fulminant hepatitis
 - \circ $\,$ 15% complete resolution without chronic infection $\,$
- HCV RNA detectable at 1-3 weeks
- Persistent infection \rightarrow chronic hepatitis: >80%
 - Cirrhosis 30%
 - \circ HCC

Serology

- HCV RNA
 - Appears at 1-3 weeks
 - \circ Coincides with transaminitis
- IgM then IgG anti-HCV Abs
 - \circ $\,$ Only 50% have Abs detectable during acute infection $\,$

Features making vaccination difficult

Antigenic variability	bility Highly stable core, extremely variable envelope	
Genetic variability	Multiple quasispecies due to RNA pol mutation	

• HCV also able to inhibit IFN-mediated cellular response

HEPATITIS D

- ssRNA
- Must always be in conjunction with Hep B infection
 - HBsAg provides a capsule
- Complete virion consists of:
 - HBsAg outer coat
 - Internal HD Ag polypeptide + circular ssRNA

Acute infection	Exposure to both HBV + HDV	
	Indistinguishable from acute HBV infection	
	HBV must establish first to provide HBsAg needed for development of	
	complete HDV virions	
Superinfection	Chronic HBV carrier exposed to new inoculation of HDV	
	Disease develops approx. 1 month later	

Manifestation of superinfection

- Severe acute hepatitis in previously unrecognized HBV carrier Or
- Exacerbation of previously mild chronic HepB
- 90% of HDV superinfection goes to chronic infection

HDV diagnosis

HDV RNA

•

•

- Appears early
- IgM anti-HDV
 - Most reliable marker of recent infection
 - But appears late and is short-lived
- Co-infection: IgG against both HDAg + HBcAg

INFECTIVE ACUTE HEPATITIS

Clinical picture:

- Acute asymptomatic with recovery
 - Acute symptomatic:
 - 1. Incubation
 - 2. Symptomatic pre-icteric
 - 3. Symptomatic icteric
 - 4. Convalescence
 - Symptomatic pre-icteric:
 - Constitutional fever, myalgia
 - Liver symptoms (tender hepatomegaly)
 - Serum sickness 10%
 - Symptomatic icteric:
 - o Conjugated hyperbilirubinaemia

- Recovery
 - \circ Weeks months
 - T-cell response (CD4, CD8)

• Fulminant hepatitis:

- o Over 2-3 weeks
- Encephalopathy
- o Coagulopathy
- o **ARDS**
- **o** Hepatorenal failure
- Usually HAV / HBV
- No stigmata of chronic liver disease

• Chronic hepatitis:

- > 6 months of:
 - Symptoms
 - Biochemical
 - Serological
- Variable course to:
 - Cirrhosis
 - Liver failure
 - HCC

Path of acute hepatitis:

- 1) Inflammation + necrosis/apoptosis
- Enlarged red liver
- Ballooning degeneration
- Hepatocellular necrosis
- Bridging necrosis
- Cholestasis

2) Regeneration

- Hepatocyte proliferation
- Monocyte infiltration, Kuppfer cell uptake of debris

JAUNDICE

Unconjugated	
	Haemolysis
	\Downarrow Hepatic uptake of bilirubin
	Drug interference
	Gilbert's
	\Downarrow Conjugation (\Downarrow UGTA1 activity)
	Gilbert's
	Crigler-Najar
	Physiological jaundice of newborn
	Hepatitis
	Cirrhosis
Conjugated	Ucanalicular membrane transporters
	Rotor syndrome
	Dubin-Johnson
	\downarrow Bile flow
	Intrahepatic / extrahepatic biliary duct obstruction

Features of liver failure

- Jaundice
- Pruritis
- Ascites
- Bruising
- Spider nevi
- Gynaecomastia
- Hypogonadism
- Palmar erythema
- Caput medusa
- Hepatorenal, hepatopulmonary

Bilirubin metabolism:

- Catabolism of haem from senescent RBCs
- Transported to liver bound to serum albumin
- Hepatocellular uptake
- Glucuronidation (UGTA1) bilirubin digluconuride excreted in bile
- Gut deconjugation \rightarrow colourless urobilinogens \rightarrow excreted in faeces
- 20% GI urobilinogen is reabsorbed in the ileum + colon + returned to the liver, some of which is then excreted in urine

ACUTE LIVER FAILURE

Causes of acute liver failure

- Infection (mainly A + B)
- Toxins
 - \circ Paracetamol
 - \circ Halothane
 - o Rifampicin
 - $\circ \ {\rm Mushrooms}$

Hepatorenal failure

- Renal failure in a person with severe liver failure
- No intrinsic reason of renal failure
- Characterised by:
 - Renal vasoconstriction
 - \forall Renal perfusion + GFR
 - \circ Na retention
 - Impaired water excretion
- Reversible but represents poor prognosis

PANCREATITIS

Causes

- Gallstones
- ETOH
 - These 2 represent 80% of acute pancreatitis
- **î**Lipids
- Drugs (e.g. azathioprine)
- Poisons
- Trauma
- Shock
- Infectious (e.g. mumps)
- latrogenic (ERCP)

Pathogenesis of acute pancreatitis

- Autodigestion of pancreatic parenchyma
- By inappropriately activated pancreatic enzymes
- Trypsin activation is integral
 - Subsequently activates proelastin, prokallikrien, Hageman factor
- >
- Interstitial inflammation
- \circ Oedema
- Haemorrhage
- Fat necrosis

Causes of inappropriate activation of digestive enzymes

Pancreatic duct obstruction	Accumilation of lipase in interstitium
	Local fat necrosis
	Release of proinflammatory cytokines
	Acute inflammation + ischaemia
Primary acinar cell injury	Drugs / toxins / ischaemia
Defective transport of	Release of activated enzymes
proenzymes in acinar cells	

Cellular morphology

- Inflammation + microvascular leakage
- Oedema
- Necrosis
- Haemorrhage
- Lipolysis
- Proteolysis of parenchyma
- FFA + Ca \rightarrow salts \rightarrow precipitate
- Fat necrosis
- Peritoneal fluid
- Extra-pancreatic fat necrosis (e.g. omentum)

Consequences

- Third space losses
- Shock
- Multi-organ failure
 - o ARDS
 - Acute renal tubular necrosis
 - o DIC

Lab findings acute pancreatitis

- ⁽¹⁾Amylase, first 24hrs
- 11 Lipase, first 3-4 days
- Glycosuria
- UCa (poor prognosis)
- Leukocytosis
- AKI

CHRONIC PANCREATITIS

- Morphological features
- Parenchymal fibrosis
- Calcification
- \Downarrow Size + number of acini $\rightarrow \Downarrow$ exocrine secretions
- Relative sparing of **islets** of Langerhans, but may \Downarrow in late disease
- Dilation +/- blockage of pancreatic ducts

Clinical

- <u>Irreversible</u> impairment of pancreatic function
- Endocrine: diabetes
- Exocrine:
 - o Steatorrhoea
 - o ↓ADEK
 - Malabsorption
- Pseudocyst formation
- Chronic pain
- Poor long-term prognosis

PORTAL HYPERTENSION

Prehepatic	Portal vein thrombosis	
Hepatic	Cirrhosis	
	Massive steatosis	
	Schistosomiasis	
	Granulomatous disease	
Post-hepatic	Budd-Chiari	
	Severe RHF	
	Constrictive pericarditis	

Consequences of portal HTN

- Ascites
- SBP
- Porto-systemic shunting: varicies, haemorrhoids
- Congestive splenomegaly: TCP / pancytopaenia
- Hepatic encephalopathy

Mechanism of ascites

- Starling's forces in sinusoids:
 - **îHydrostatic pressure**
 - ↓Albumin
- - Exceeds capacity of thoracic duct so percolates into peritoneum
- Secondary hyperaldosteronism \rightarrow 1 renal conservation of Na + H2O

ACUTE KIDNEY INJURY (AKI)

- Acute **↓** renal function
- Normally reversible
- Usually due to **tubular injury**

Causes

Pre-renal	[↓] Perfusion
Intrinsic renal	• ATN
	 Ischaemic Systemic: shock, thrombosis (HUS, TTP, DIC) Intrarenal: vasculitis Intracapsular tamponade Toxic:
Post-renal	Post-renal obstruction:
	 Tumour, clot, stones

Phases of AKI

Initiation (<36hr)	UO
	îUrea
Maintenance	↓uo
	Na + H2O retention
	①Urea
	ſκ
	Metabolic acidosis
Recovery	Πuo
	Na + H2O loss
	₩κ

RENAL FUNCTION

*Renal blood flow (RBF) = 1200 ml/min (25% of CO)

- *Glomerular filtration rate (GFR) = 125 ml/min (10% of renal perfusion)
- *Filtration fraction = 0.16-0.20
- *Urine flow = 1.5 ml/min

*Max H2O resoprtion – 99.7% of filtered load

*Max urine osmolarity – 1400mosm

*Maximal urine flow is 16mL/min (normal 1.5ml/min)

GFR is ↓ by:

- AT2
- Vasopressin
- Noradrenaline
- Hypotension

GFR is 1 by:

- Dopamine
- ACh
- ANP
- Bradykinin
- High protein diet

NEPHROTIC SYNDROME

Features

- Massive proteinuria (>3.5g/day)
- Hypoalbuminaemia (plasma protein < 30g/L)
- Generalised oedema
- Hyperlipidaemia + lipiduria
- Hypercoaguability
- ①Susceptibility to infection

Mechanisms:

- Alteration in glomerular capillary / epithelial walls:
 - Structural damage vs. physiochemical changes
 - $\circ \rightarrow \uparrow$ permeability to protein
- Hypoalbuminaemia, due to:
 - o Renal protein loss
 - **ÎRenal protein catabolism**
 - $\circ \quad \Downarrow$ Hepatic synthesis
- Oedema, due to:
 - Loss of colloid osmotic pressure (Starling's law)
 - \circ 1 Na + H20 retention due to activation of RAAS
- ÎSerum lipids
 - **ÎSynthesis**
 - $\circ \quad \Downarrow$ Catabolism

Mechanism of oedema

- Starling's Forces
 - \forall Serum albumin $\rightarrow \forall$ colloid osmotic pressure
- Accumulation of Na + H2O in tissues
 - \circ $\;$ Due to activation of R-A-A by:
 - Hypovolaemia
 - ÎADH
 - ①Sympathetic drive

Causes of nephrotic syndrome

Primary glomerular nephritis (GN)	Children: minimal change
(95% children, 60% adults)	Adults: membranous, FSGS
Systemic	DM
(mostly adults)	Amyloid
	SLE
	Drugs (NSAIDs, heroin)
	Infection (e.g. hepatitis viruses)

POST-STEPTOCOCCAL GN

Pathogenesis

- GAS (β-haemolytic) types 12, 4, 1 (with cell wall M protein)
- Post pharyngeal / skin infection (impetigo / scarlet fever)
- Immunologically mediated, T3HS
- Ab-Ag complex forms over 1-4 weeks
- Granular immune deposits in the glomeruli (IgG + C3) esp GBM
- Complement activation
- → <u>Acute proliferative GN</u>
- ÎTitres of antistreptococcal Ab

Post-step GN is an acute proliferative GN

Clinical

- **1-2 weeks post** streptococcal infection
- Constitutional symptoms: malaise, fever
- Nephritic picture
 - o Haematuria
 - o Red cell casts
 - o Mild proteinuria
 - Periorbital oedema
 - o HTN
- 95% recover within 3 weeks
- 4% chronic
- 1% severe acute renal failure (rapidly progressive GN)
- In adults the clinical course is less benign 60% full recover (vs. 95%)
- In the remainder:
 - \circ Slow resolution
 - $\circ \quad \text{Chronic GN}$
 - Rapidly progressive GN
Bloods:

- Depleted C3
- Strep Ags

PRE-ECLAMPSIA

Path

- Placental ischaemia
- Endothelial dysfunction
- Vasoconstriction
 - ↓PGI2, PGE2
 - o **îRenin-AT**
 - ①TXA2
- ①Vascular permeability → proteinuria + oedema
- Systemic HTN + DIC

Clinical course

- Has to be >20/40, normally >32/40
- Oedema + proteinuria
- Headache + visual changes
- Exclampsia: convulsions + coma

Changes at a placental level

- Villous hypovascularity
- Villous ischaemia
- Placental infarcts
- Fibrinoid necrosis
- Retroplacental haematoma
- Prominent syncytial knots
- Thickened trophoblastic BM

PYELONEPHRITIS

Organisms

- Gram –ve bacillus
 - o E. coli
 - o Proteus
 - o Klebsiella
 - Enterobacter
 - o Strep faecalis
- Other:
 - o Staph
 - o Fungal

Ascending infection of urinary tract

- Colonisation of distal urethra
- Entry into bladder
- Urinary tract obstruction / stasis of urine
- Vesicoureteric reflux
- Intrarenal reflux

Predisposing factors to acute pyelonephritis

- Females < 50</p>
- Males > 50yrs
- DM / immunosuppression
- Pregnancy
- Urinary tract obstruction
- Instrumentation
- Vesico-ureteric reflux

Chronic pyelonephritis

- Chronic **reflux** or **obstruction** → pelvocalyceal damage
- Recurrent infection \rightarrow recurrent renal inflammation \rightarrow scarring

URINARY TRACT OBSTRUCTION

Congenital	PUJ narrowing
	Urethral strictures
	Bladder neck narrowing
Acquired	Calculi
	Tumours (TCC)
	Blood clots
	Prostatic enlargement
	Inflammation: urethritis, prostatitis
	Retroperitoneal fibrosis
	Sloughed papilla
	Gynae: uterine prolapse
	Functional: neurogenic bladder

Consequences

- ↓GFR
- Progressive dilation upstream of obstruction: ureter, pelvis, calyces (hydronephrosis)
- Blunting of the apices of the pyramids
- Enlargement of kidney
- Renal parenchymal atrophy
- End result: large, thin-walled, non-function cystic kidney.

Acute obstruction

- Pain:
 - Distension
 - Sx of underlying pathology (e.g. calculi)
- LUTS: polyuria, nocturia, dribbling
- Asymptomatic
- AKI (bilateral obstruction)

Clinical consequences of acute obstruction

- Infection
- Stone formation
- Hydronephrosis \rightarrow obstructive nephropathy \rightarrow renal failure
- Complications of renal failure

RENAL STONES

Types

Ca oxalate	70%
Ca phosphate	
Struvite (triple phosphate)	20%
Uric acid	
Cysteine	
Xanthine	

Calcium oxalate

- Idiopathic hypercalcuria
- Secondary hypercalcaemia + hypercalcuria
 - ÎPTH
 - o Bone disease
 - Sarcoid
- Hyperoxaluria
 - o Primary
 - o Enteric

Magnesium, ammonium phosphate (struvite)

■ Urea splitting organisms (e.g. proteus) → alkaline urine

Urate

①Cellular turnover

What conditions favour stone formation

- îCa (e.g. loop diuretic)
- Acid or alkaline
- Bacteria
- Urine volume
- Anatomic variants: e.g. horseshoe kidney, polycystic
- Metabolic conditions; inherited or acquired

Complications

- Obstructive nephropathy
- Infection
- Pain
- Haematuria

DIABETES

Complications of diabetes

Macrovascular	Atherosclerosis
	CAD, PVD, RAS
	Aneurysm
	Stroke
	Hyaline arteriosclerosis \rightarrow stroke
Microvascular	Nephropathy
	Neuropathy
	Retinopathy, cateracts, glaucoma
	Cerebral small vessel disease
	(Thickened BM, 们permeability of vessles to plasma proteins)
Metabolic	DKA
	HHS
	Hypoglycaemia
Cutaneous	Ulcers
	Necrobiosis lipoidica
Infections	↑Susceptibility to infections

Pancreatic changes:

- Loss of islet cells
- Amyloid infiltrates

Renal changes:

- BM thickening
- Mesangial sclerosis
- Glomerulosclerosis
- Nodular = Kimmelsteil-Wilson nodules
- Nephrotic syndrome
- RAS
- Pyelonephritis

Occular:

- Proliferative vs. non-proliferative
- Microaneurysms
- Exudates
- Neovascularisation → retinal + vitreous haemorrhage
- Detatchment
- Cataracts

Glaucoma

T1 vs. T2DM

DMT1	DMT2
Childhood / young adulthood	Adult
Not overweight	Overweight
↓Insulin	î/N/Ų insulin
Islet Abs	No Abs
T4HS	T2HS
Polyuria, polydipsia, DKA	HHS
HLA-linked	Stronger genetic, but not HLA
Abrupt onset, exhaustion of B cell reserve	More insidious onset
(may be ppt by infection îdemand on panc)	

Pathogenesis DKA

- Insulin deficiency + glucagon excess
- → ↑ gluconeogenesis, ↓ peripheral utilization of glucose
- \rightarrow severe hyperglycaemia
- Hyperglycaemia \rightarrow osmotic diuresis \rightarrow dehydration
- \Downarrow Insulin \rightarrow \Uparrow Ipolysis \rightarrow FFA
- FFA \rightarrow ketone bodies in liver
- Rate of ketone production > ketone utilization → ketonaemia
- ①Ketones → metabolic acidosis

Aetiology of DMT1

- Genetic predisposition (HLA-linked)
- Precipitating event
- Autoimmune destruction of islet cells
 - T-cell mediated + auto-antibodies
 - Possible molecular mimicracy
- B cell destruction $\rightarrow \downarrow$ cell mass, \downarrow insulin
- Hyperglycaemia
- Subclinical \rightarrow overt DM

Environmental factors contributing to DMT1

- Infection: EBV, mumps, measles
 - $\,\circ\,$ May induce inflammation and release of islet antibodies
- \circ OR molecular mimicracy
- ? Cows milk exposure < 4 months old</p>
- Drugs pentamidine

Genetics of T1DM

- MHC 2 (HLA) HLA-DR3, DR4
- DQB1*0302 allele
- Insulin gene mutations

Pathogenesis of T2DM

1. Insulin resistance

2. Quantative + qualitative B cell dysfunction

Insulin resistance

- $\circ \Downarrow$ Response of peripheral tissues to secreted insulin
- $\circ \Downarrow$ Receptors or \Downarrow post-receptor downstream signalling
- Genetic predisposition + lifestyle (obesity)
- Quantitative + qualitative B cell dysfunction
 - \circ Initial B cell hyperplasia → \uparrow inslin → compensation for resistance
 - \circ Subsequent failure of sufficient insulin secretion \rightarrow inadequate insulin secretion in context of resistance
 - $\circ\,$ Genetic predisposition to β cell failure
 - \circ Mechanism: \Downarrow glucose sensing, cellular overstimulation

RFs for T2DM

- Strong genetic but not HLA, 80% concordance
- Obesity

Complications of sustained hyperglycaemia

- Osmotic diuresis:
 - Dehydration
 - Hypercoaguability
- Electrolyte disturbance
 - o Na, K, Phos
- Hyperosmolarity
 - o Altered LOC

GRAVE'S DISEASE

Clinical

- Hyperthyroidism
- Goitre
- Infiltrative eye disease
- Infiltrative dermopathy

Pathogenesis

- Auto-immune:
 - TSH-receptor stimulating Abs
 - $\,\circ\,$ IgG mimics TSH
 - Anti-TPO, anti-thyroglobulin
- T2HS PIC'D: phagocytosis, inflammation, cytotoxicity, dysfunction

THYROTOXICOSIS

■ Hypermetabolic state caused by *î*T4, *î*T3

Cardiac	Tachycardia
	Arrhythmia
	Angina
	High output cardiac failure
Neuromusc	Proximal myopathy, tremor
Occular	Proptosis, lid lag
CNS	Anxiety, insomnia
	Heat intolerance
Skin	Warm, flushed, flsweating
Thyroid storm	Fever, tachycardia, arrhythmia
	Can be fatal

Causes of thyrotoxicosis

- Graves
- TMNG
- **o** Toxic adenoma / carcinoma
- $\circ\,$ Neonatal from maternal Graves

PITUITARY ADENOMAs

Types

- Classified according to hormone type
- Basophils: FSH, LH, ACTH, TSH
- Acidophils: GH, Prolactin
- Functioning vs. non-functioning adenomas

Clinical syndromes

Prolactin	Galactorrhoea
	Amenorrhoea
	Infertility
	Loss of libido
Somatotroph	Giantism
	Acromegally
ACTH	Cushing's
Gonadotroph	Hypogonadism (lethargy, loss of libido)

General:

- Mass effect
 - \circ Headache
 - o Bitemporal hemianopia
 - o Diplopia
- Pituitary apoplexy

FRACTURE HEALING

Classification of fractures

- Complete / incomplete
- Open / closed
- Comminuted
- Diplaced
- Angulated
- NV compromised
- Pathologic

Fracture healing

Haematoma	Immediate – hours
	Fills fracture gap
	Provides fibrin mesh framework
Influx	Days
	Inflammatory cells
	Fibroblasts
	Osteoprogenitor cells
	Angiogenesis
Procallus	Haematoma organizing $ ightarrow$ procallus
Fibrocartilaginous	Mesenchymal cells + cartilage cells along fracture line
callus	
Ossification	2-3 weeks
	Activation of osteoprogenitor cells
	Procallus $ ightarrow$ boney callus (woven bone)
Remodelling	6 weeks
	Callus matures, remodelling

Remodelling:

- Initial large volume of callus
- Portions not physically stressed are resorbed, reducing callus size

Factors impeding fracture healing

- Inadequate immobilization
- Inadequate alignment
- Vascular insufficiency
- Infection
- FB
- Systemic factors:
 - Smoking
 - $\circ \mathsf{DM}$
 - \circ Nutritional

GOUT

Hyperuricaemia

Primary gout	Usually idiopathic
90%	Overproduction – diet, unknown enzyme deficiencies
	Reduced excretion / filtration
Secondary gout	Increased cell turnover: leukaemia, TLS
10%	Psoriasis
	Inborn errors of metabolism (îproduction)
	 HGPRT deficiency
	 Lesch-Nyhan syndrome
	CKD (\Downarrow excretion)

Pathogenesis of gout

- Purine metabolism → urate
- Hyperuricaemia
- PPT of urate crystals into joints synovium, cartilage
- Release of crystals into the synovial fluid (? following trauma precipitant)
- Supersaturation of urate in synovial fluid
- Intense inflammatory response
 - Phagocytosis of crystals by macs / neuts
 - Release of inflammatory by macs + neuts
 - $\circ \rightarrow$ further chemotactic stimuli for inflammatory cells
 - \circ Mediators:
 - ILs
 - Lysosomal enzymes
 - LTs
 - PGs
 - O2 free rads
- Acute arthritis:
 - $\circ\,$ Intense acute inflammation
 - $\,\circ\,$ Cartilage + joint damage

Causes for hyperuricaemia \rightarrow primary gout

- Age
- Genetic predisposition
- ETOH
- Obesity
- Drugs e.g. thiazides
- Duration of hypercalcuria

Path features of gout

- Acute arthritis see description of pathogenesis above
- Chronic arthritis
- Tophi in synovial membrane and periarticular tissue
- Nephropathy (deposition of urate crystals in kidney)
- Urate stones

OSTEOARTHRITIS

RFs Genetic + mechanical

- Age
- Gender
- Obesity, DM
- Joint:
 - o Congenitally abnormal joints
 - o Injury

Pathogenesis

Chondrocyte injury	
Chondrocyte proliferation	Inflammatory mediators
Secretion of ECM	Collagens
Secretion of inflammatory mediators	Proteoglycans
	Proteases
Loss of chondrocytes & loss of cartilage	Chronic inflammation / ongoing injury $ ightarrow$
	chondrocyte drop-out
	Dislodged cartilage into joint space
Loss of proteoglycans	
Subchondral bone change	Fibrillation, subchondral cysts
	Eburnation
	Osteophytes

Clinical

- Deep achey pain, morning stiffness, worse with use, crepitus, UROM
- Oligoarthritis in 95%
- Women: hands and knees
- Men: hips
- Osteophytes @ spinal foramina \rightarrow radiculopathy \rightarrow pain, neuro symptoms, atrophy

OSTEOMYELITIS

Pathogenesis acute OM

- Haematogenous spread of organism to bone
- Extension from contiguous site
- Local bone injury with direct organism entry
- Acute inflammation (neutrophils)
- Abscess (subperiosteal vs. surrounding soft tissue)
- Necrosis (dead bone forms sequestrum)
 - May be a draining sinus from sequestrum
- Regeneration (involecrum forms from stripped periosteum by reactive bone deposition, around the sequestrum)
- XR: lytic focus surrounded by zone of necrosis → lifting of periosteum

Organisms

- Staph aureus (>80%)
- E. coli
- Salmonella
- Klebsiella
- Pseudomonas
- GBS (neonates)
- Fungal

Outcomes

- Resolution
- Deformity + bone destruction
- Chronic inflammation (25%)
 - $\circ\quad \text{Acute fair ups} \quad$
 - Pathological fractures
 - Septic emboli e.g. SBE
 - o Sepsis
 - o Amyloidosis
 - SCC in draining sinus tracts
 - $\circ \quad \text{Sarcoma of bone}$

RFs

- Immunosupression:
 - o HIV
 - o DMs
 - o Steroids
- Trauma
- Joint surgery / prosthesis
- IVDU

RHEUMATOID ARTHRITIS

Pathogenesis

- Exposure of genetically susceptible host to an antigen resulting in chronic inflammation
- Autoimmune, T4HS
- Mediated by Th cells + inflammatory mediators
- \rightarrow Progressive joint disruption

Genetic susceptibility	HLA-DRB1
Environomental arthritogens	? Microbial
Autoimmunity	Autoimmune T4HS Th-cell mediated

Morphology of joint lesion

- Hyperplasia of synovium → pannus formation
- Perivascular inflammatory cell infiltrate:
 - o Neutrophils
 - o Macrophages
 - $\circ \quad \text{CD4 Th cells} \\$
 - o Plasma cells
- Angiogenesis
- Pannus invades the joint cartilage
- Osteoclastic action → juxta-articular boney erosions
- Pannus spans the joint space → fibrous ankylosis
- Ossification of panus → boney ankylosis

Extra-articular manifestations

- Rheumatoid nodules
 - 25% often forearm / elbow
- Fibrinoid necrosis
 - o Epitheloid cells, macrophages
- Vasculitis
 - o Mononeuritis multiplex
 - Digital ulcers / nail bed infarcts
- Dermatological PG
- CKD
- Felty's syndrome splenomegaly + neutropaenia

Long term

- Joint destruction
- CKD
- îcvs

BERRY ANEURYSMS

Location

- 90% near major arterial branch points
- Ant cerebral artery
- Acom
- Multiple in 20-30%

Morphology

- Thickened hyalinised intima
- <u>Thinned media</u>
- Normal adventitia

RFs for rupture

- Size (>1cm = 50% rupture / year)
- **ÎICP** (straining, orgasm)

Natural Hx of SAH

- Thunderclap headache, +/- LOC
- Up to 50% mortality at time of bleed
- Re-bleeding
- Vasospasm → secondary ischaemic injury
- Hydrocephalus (communicating vs. non-communicating)

Sequalae of SAH

- Vasospasm \rightarrow ischaemic stroke
- Fibrosis + scarring \rightarrow communicating / non-communicating hydrocephalus
- Death

CEREBRAL INFARCTION

Causes of infarction

- **Global** cerebral ischemia general U cerebral perfusion e.g. shock
- Focal cerebral ischemia (localized):
 - o Arterial thrombosis (usually secondary to atherosclerosis)
 - Arteriosclerosis \rightarrow lacunar infarcts
 - **Embolic** (thrombus / fat / air name sites of thromboembolism)
 - Vasculitis (e.g. PAN, giant cell, infectious vasculitis [CMV, syphilis])
 - Dissection
 - Vasospasm (e.g. amphetamine / cocaine)
 - Venous obstruction (e.g. hanging)

Arterial obstruction

- Atherosclerosis
- Thrombosis
- Embolism

Venous obstruction

Other:

- Dissection
- Aneurysm
- Vasculitis
- External compression

Sources of arterial thromboembolism

- Latrium
- L ventricle
- Valvular vegitations
- Carotids (bifurcation)
- Venous system via PFO (paradoxical embolus)

Place of embolism impaction

- Lodges in MCA
- Usually impacts at branch point
- Causes ischaemia

Haemorrhagic vs. non-haemorrhagic ischaemia

Haemorrhagic	Non-haemorrhagic	
Red	Pale	
Normally follows embolic events	Usually a/w thrombosis	
Multiple petechial haemorrhages which can		
be confluent		
Due to reperfusion		

Thrombolysis

- Attempts to reverse injury in ischaemic penumbra
- Earlier treatment leads to better outcome and less risk of haemorrhagic transformation
- Complications of thrombolysis higher with embolic / haemorrhagic CVAs

Effects of HTN in the brain:

- 1. Lacunar infarcts
- 2. Slit haemorrhages
- 3. Massive ICH (deep)
- 4. HTN encephalopathy

CEREBRAL OEDEMA

Vasogenic	BBB disruption \rightarrow 1 vascular permeability	
	Fluid shift intravascular $ ightarrow$ interstitial	
	Generalised vs. localised	
Cytotoxic	↑ Intracellular fluid due to cellular injury	
	Neuronal / glial cell injury	
	E.g. generalized hypoxic / ischaemic insult	
Hydrocephalus	Interstitial oedema around lateral ventricles with hydrocephalus due to 1	
/ interstitial	hydrostatic pressure	

Generalised cerebral oedema

- Flattened gyri
- Narrowing of sulci
- Compression of ventricles
- Herniation syndromes

Herniation syndromes

Subfalcine	Displacement of cingulate gyrus under the falx cerebri	
Transtentorial / uncal	Medial aspect of temporal lobe over free margin of tentorium	
Tonsillar	Cerebellar tonsils through foramen magnum	

DEMENTIA

Causes of dementia

- AD (commonest)
- Multi-infarct
- FTD
- LBD
- CJD (Prion)
- Infectious: neurosyphilis, HIV

Pathogenesis of AD

- Lysis of transmembrane Amyloid Precursor Protein (APP) involved in cell signaling and transcription regulation
- Aβ amyloid aggregrates into **amyloid fibrils** which can be directly **neurotoxic**
- Also accumulation of neurofibrillary tangles of hyperphosphorylated protein TAU
- Severity of AD is related to loss of synapses

INTRACEREBRAL HAEMORRHAGE

Causes

- HTN
- Cerebral amyloid
- Vascular malformations
- Neoplasia
- Bleeding disorders
- Vasculitis

Areas of brain

- HTN deep putamen (most common), thalamus, pons
- Amyloid more superficial

Cerebral amyloid angiopathy

- Deposition of amyloidogenic peptides in the walls of...
 - **medium + small** caliber
 - meningeal + cortical vessels
- Deposition of amyloid weakens the vessel wall

INTRACRANIAL BLEED

- Extradural
- Subdural
- SAH
- Intraventricular
- Intraparenchymal

Extradural

- Dural artery usually MMA @ level of pterion is torn by skull fracture
- Haematoma strips dura off of skull
- May be lucid period before \Downarrow LOC

Concussion

- Altered LOC secondary to head injury
- Transient neurological dysfunction
- Transient respiratory arrest
- Transient loss of reflexes
- Unclear pathogenesis may be dysregulation of RAS
- Clinical features of concussion:
 - Headache
 - o **N&V**
 - o Amnesia
 - Concentraion + memory issues
 - Irritability / behavior changes

MENINGITIS

CSF features of bacterial meningitis

- **î**CSF pressure
- Turbid
- UGlucose, îProtein
- Pleocytosis with neutrophil predominance
- (Bacteria on gram stain)

CSF features viral meningitis

- Moderately ¹protein
- Normal glucose
- Lymphocytes

Neonates	GBS
	E. coli
	Listeria
Infants	Haemophilus
	Strep pneumoniae
Adults	Meningococcus
	Strep pneumoniae
Elderly	Listeria
	Strep pneumoniae

Other causes of meningitis

- Viral
- Fungal
- TB

- Chemical / drug induced
- Carcinomatous

Other classification

Acute pyogenic	Bacterial
Aseptic	Viral / chemical
Chronic	TB, carcinomatous

Viral

- Enteroviruses:
 - Cocksackie
 - o Echovirus
 - o Poliovirus

MULTIPLE SCLEROSIS

- Neruological deficits, or imaging evidence of demyelinating lesions of the CNS, distinctly separated in time and space
- Cause by autoimmune demyelination
- Unilateral optic neuritis is common
- Also brainstem + cord lesions

Pathogenesis

- Autoimmune, demyelinating disorder of CNS
- White matter lesions separated in time and space
- Likey T-cell mediated T4HS attack of oligodendrocyte (myelin) self-antigens
- Aetiology unclear
- Genetic + environmental (microorganism trigger?)
- CD4+ Th1 cells react against viral trigger, release IL2 + IFN, active macrophages against self antigen
- Inflammatory cells create plaques

CSF in MS:

- ¹Protein (mild)
- ① Gammaglobulin oligoclonal bands
- Pleocytosis

PARKINSON'S DISEASE

Clinical

- 3-5Hz pinrolling tremor
- Rigidity
- Bradykinesia
- Slow, festinent gait
- ↓Facial expression
- Micrographia

Pathogenesis

- Loss of dopaminergic neurons in the nigrostriatal pathway
 - o Idiopathic PD
 - Secondary:
 - MSA
 - PSP
 - Drugs DA antags / toxins (MPTP)
 - Head injury (dementia pugalistica)
 - Post-encephalitis

Parkinsons disease

- Unclear pathogenesis
- Damage to DA neurons from toxins/drugs/AI
- α -synuclean aggregation \rightarrow stress response
- **Ubiquitin proteasome** activity
- Altered mitochondrial function (loss of PINK1)

α-synuclean	
Ubiquitin-proteasome	
Mitochondrial dysfunction	
DA neurone dysfunction	

PERIPHERAL NERVE REPAIR

- Death of neurone distal to site of injury (Wallerian degeneration)
- Axonal cone growth of **1-2mm / day**
- Growth through schwann cell column
- Regeneratic clusters

SPINAL CORD INJURY

Changes occurring in spinal cord after acute injury

Acute	Haemorrhage
	Necrosis
	Axonal swelling in surrounding white matter
Late	Area of neuronal destruction: cystic + gliotic
	Wallerian degeneration of long white-matter tracts
	Liquefactive necrosis in CNS

Acute clinical features of cervical spinal cord injury

- Complete vs. incomplete
 - Incomplete syndromes: anterior, central, posterior, Brown-Sequard
- Spinal shock:
 - Quadraplegia
 - Flacid paralysis
 - o Areflexia
 - o Total anaesthesia below level
- If above C4:

○ Diaphramatic paralysis \rightarrow resp failure

- Neurogenic shock:
 - \circ ↓HR, ↓BP

SAH

Causes:

- Rupture of a berry aneurysm
- AVM
- Trauma
- Tumour

Location of saccular aneurysms

- Most at major arterial branch points of COW
- Preponderance for anterior system Acom
- MCA next most common

Genetic RFs for saccular aneurysm

- PKD
- Marfans
- Elhers-Danlos T4
- NFM T1
- Fibromuscular dysplasia
- Aortic coarctation

Non genetic RFs:

- HTN
- Smoking

Consequences of SAH

Early	Vasospasm → ischaemic injury	
	Herniation syndromes	
Later	Meningeal fibrosis + scarring	
	CSF obstruction \rightarrow communicating / non-communicating hydrocephalus	

SUBDURAL HAEMATOMA

- Damage to bridging veins across subarachnoid space between brain and dural venous sinus
- Often due to **shearing forces** during trauma / accell-decell injuries
- Blood between dura & arachnoid

Risks

- Elderly more at risk as cerebral atropy → veins are stretch across the subdural space with more room for brain to move and create sheering forces
- Infants have thin-walled bridging veins

DIFFUSE AXONAL INJURY

- Microscopic injury to axons deep brain white matter
- Axonal swelling + focal haemorrhagic lesions
- Damage to integrity of axons at **Node of Ranvier** → **alterations in axoplasmic flow**
- Can lead to immediate death / coma